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Abstract

A novel observer-base output feedback variable universe adaptive fuzzy controller is investigated in this paper. The

contraction and expansion factor of variable universe fuzzy controller is on-line tuned and the accuracy of the system is

improved. With the state-observer, a novel type of adaptive output feedback control is realized. A supervisory control-

ler is used to force the states to be within the constraint sets. In order to attenuate the effect of both external disturbance

and variable parameters on the tracking error and guarantee the states to be within the constraint sets, a robust con-

troller is appended to the variable universe fuzzy controller. Thus, the robustness of system is improved. By Lyapunov

method, the observer-controller system is shown to be stable. The overall adaptive control algorithm can guarantee the

global stability of the resulting closed-loop system in the sense that all signals involved are uniformly bounded. In the

paper, we apply the proposed control algorithms to control the Duffing chaotic system and Chua�s chaotic circuit.
Simulation results confirm that the control algorithm is feasible for practical application.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Since fuzzy logic system is a universal approximator, the adaptive control [1–3] schemes of nonlinear system that

incorporate the techniques of fuzzy logic are used to identify and control the nonlinear dynamic system [4–6]. Accord-

ing to Universal Approximation Theorem [7–11], for any given real continuous function f(x) on a compact subset U�RN
and arbitrary e > 0, there exists a fuzzy system y(x), such that maxx�U kf(x) � g(x)k < e. But there exists an error be-
tween the exact nonlinear system and an approximate model, which deteriorate the stability and control performance.

Therefore, an adaptive fuzzy system, which can incorporate the expert information systematically, has been proposed to

on-line tune fuzzy rules. Thus, the approximate error is decreased. The indirect adaptive fuzzy controller with observer

[14–16] has been developed to control the unknown nonlinear dynamic system successfully. However, the direct adap-

tive fuzzy controller with observer [17], which has the advantage of no design effort to model the unknown plant, has

seldom been shown. The design of fuzzy controller can be divided into two parts: fuzzy rules and scaling gains (con-

traction–expansion factors). Some articles [12,13,18–20] have shown the design approaches of fuzzy controller, but

these approaches depend on operation experience. In this paper, a variable universe adaptive fuzzy controller with
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observer is investigated to control a class of unknown nonlinear dynamical system. We know, different control values,

namely different scaling gains (contraction–expansion factor) is needed in transient and steady states. Thus, by adjust-

ing scaling gains (contraction–expansion factors), the universe of discourse is changed automatically.

There are at least two different approaches, which can guarantee the stability of fuzzy system. The first approach

[12] is to specify the structure and parameters of fuzzy controller such that the closed-loop system is stable. But the

approach usually requires fuzzy controller to satisfy some strong conditions, which greatly limit the design flexibility.

In the second approach [7], the fuzzy controller is designed firstly without any stability consideration, and then an-

other controller (supervisory controller) is appended to the fuzzy controller to satisfy the stability requirement. Be-

cause there is much flexibility in designing fuzzy controller in this second approach, the resulting system is

expected to show high performance. Because variable universe fuzzy controller is the main controller, the supervisory

controller would be a better safeguard. Therefore, the supervisory controller works in the following fashion: if the

variable universe fuzzy controller works well, the supervisory controller is idle; if the fuzzy control system tends to

be unstable, the supervisory controller begins to work in order to guarantee stability. Thus, all the signals involved

are bounded.

The rest of this paper is organized as follows. In Section 2, the problem formulation is presented. Section 3, an ob-

server-based variable universe fuzzy controller is developed. Cooperated with the supervisory controller and robust

controller, scaling gains (contraction–expansion factors) are on-line tuned. Section 4, Simulation examples to demon-

strate the performance of the proposed method are provided. Section 5, we make a conclusion of the advocated design

methodology.
2. Problem formulation

Consider the nth-order nonlinear dynamical system of the form
_x1 ¼ x2;

_x2 ¼ x3:

� � �
_xn ¼ f ðx1x2 � � � xn�1xnÞ þ gðx1x2 � � � xn�1xnÞuþ d;

y ¼ x1;

ð1Þ
where, f(x) and g(x): unknown but bounded functions, u2R and y2R: control input and output of the system, respec-
tively. d: external bounded disturbance.

Define x ¼ ½ x1 x2 � � � xn � ¼ ½ x _x � � � xðn�1Þ � 2 Rn; the state space representation of (1) is expressed as
_x ¼ Aþ Bðf ðxÞ þ gðxÞuþ dÞ;
y ¼ CTx;

ð2Þ
where
A ¼

0 1 0 0 � � � 0 0

0 0 1 0 � � � 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 0 0 0 0 0 1

0 0 0 0 0 0 0

2
6666664

3
7777775
; B ¼

0

0

..

.

0

1

2
6666664

3
7777775
; C ¼

1

0

0

..

.

0

2
6666664

3
7777775
;

and x0 ¼ ½ x2 � � � xn �T ¼ ½ _x � � � xðn�1Þ �T 2 Rn�1 is a state vector where xj (j = 2, . . .,n) are not assumed to be avail-
able for measurement. Only the output y is assumed to be measurable. For (2) to be controllable, it is required that

g(x)5 0 for x in a certain controllability region U c � Rn. We assumed that 0 < g(x) <1, x2Uc. The control objective
is to force the output y to follow a given bounded reference signal yr. For the sake of facility, we transform a tracking

problem into a regulation problem. The reference signal vector yr, tracking error vector e and estimation error vector ê

are defined as, respectively,
yr ¼
h
yr _yr � � � yðn�1Þr

iT
2 Rn;

e ¼ yr � x ¼
h
e _e � � � eðn�1Þ

iT
2 Rn;

ê ¼ yr � x̂ ¼
h
ê _̂e � � � êðn�1Þ

iT
2 Rn;

ð3Þ
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where x̂ and ê denote the estimation of x and e, respectively. Select kc ¼ ½ kc1 kc2 � � � kcn �
T 2 Rn such that all roots of

the polynomial pðsÞ ¼ sn þ kcns
n�1 þ � � � þ kc1 are in the open left-half plane, i.e. stable Hurwitz polynomial. If f(x), g(x)

are known and the system is free of disturbances, based-on certainty equivalence approach, the control law is as follows:
u� ¼ 1

gðxÞ

h
�f ðxÞ þ yðnÞr þ kTc e

i
: ð4Þ
However, f(x), g(x) is unknown and not all states are available for measurement, we have to design an observer to esti-

mate the state vector. We select a controller as follows:
u ¼ uDðx̂=bÞ þ uSðx̂Þ þ uC; ð5Þ
where uDðx̂=bÞ is the variable universe fuzzy controller; uSðx̂Þ; is the supervisory controller; uC is the robust controller,
and the certainty equivalent controller can be rewritten as
u� ¼ 1

ĝðx̂Þ �f̂ ðx̂Þ þ yðnÞr þ kTc ê
h i

: ð6Þ
From (5), (6) and (2), we have
_e ¼ _yr � _x ¼ Ayr þ ByðnÞr � Ax� B f ðxÞ þ gðxÞ½uDðx̂=bÞ þ uSðx̂Þ þ uC� þ df g
¼ Ae� BkTc ê� B �ĝðx̂Þu� þ gðxÞ½uDðx̂=bÞ þ uSðx̂Þ þ uC� þ df g
¼ Ae� BkTc êþ B ĝðx̂Þu� � ĝðx̂Þ½uD þ uS þ uC� þ ĝðx̂ÞðuD þ uS þ uCÞ � gðxÞðuD þ uS þ uCÞ � df g
¼ Ae� BkTc êþ Bðĝðx̂Þðu� � uD � uS � uCÞ þ ðĝðx̂Þ � gðxÞÞðuD þ uS þ uCÞ � dÞ;

e1 ¼ CTe:

ð7Þ
Consider the following observer to estimate the error vector e in (7),
_̂e ¼ Aê� BkTc êþ kðe1 � ê1Þ;
ê1 ¼ CTê:

ð8Þ
The observable errors are defined as ~e ¼ e� ê, from (7) and (8), we can obtain observable error vector as follows:
_~e ¼ ðA� kCTÞ~eþ B ĝðx̂Þðu� � uDðx̂=bÞ � uS � uCÞ þ ðĝðx̂Þ � gðxÞÞðuD þ uS þ uCÞ � d½ �;
~e1 ¼ CT~e;

ð9Þ
where
A� kCT ¼

�kn 1 0 0 � � � 0 0

�kn�1 0 1 0 � � � 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

.

�k2 0 0 0 0 0 1

�k1 0 0 0 0 0 0

2
66666664

3
77777775
; k ¼

kn
kn�1

..

.

k2
k1

2
66666664

3
77777775
; ð10aÞ

ðA� kCTÞTP þ Pða� kCTÞ ¼ �Q; Q is arbitrary positive definite matrix: ð10bÞ
Since (C,A � kCT) pair is observable, select the observer gain vector k, such that the characteristic of polynomial

A � kCT is strictly Hurwitz [6]. Thus, there exits a positive definite symmetric matrix P, which satisfies the Lyapunov

equation (10b).
3. Variable universe adaptive fuzzy controller

3.1. Basic structures [21,22]

Let Xj = [�Ej,Ej] (j = 1,2, . . .,n) be the universe discourse of the input variable xj (j = 1,2, . . .,n), and Y = [�U,U] be
the universe discourse of the output variable y. {Ajl}(16 l6 h) stand for a fuzzy partition on Xj and {Bl}(16 l6 h) stand for

a fuzzy partition on Y. For any xj2Xj, the membership Ajl (xj) which is the true value of ‘‘xj is Ajl’’ is transferred to
the resulting consequent parameter yl. If the value is 1, the resulting value of the consequent parameter is certainly yl.
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However, Ajl (xj) is not always equal to 1. So, yl is not completely chosen as the resulting consequent parameter value.

We choose a ‘‘reliability’’ which is not higher than Ajl (xj) to be a weight multiplied by yl. In the paper, the ‘‘reliability’’

is equal to Ajl (xj), the resulting output is as follows:
y,

Ph
l¼1
Qn

j¼1AjlðxjÞyl
� �

Ph
l¼1AjlðxjÞ

;
Xh
l¼1

AjlðxjÞ ¼ 1: ð11Þ
In the paper, the variable universe fuzzy controller is presented. In the premise that the number of initial control

rules is fixed, the universe discourse is changed with the changing error. Thus, the control rules are tuned dynamically.

The situation of variable universe is shown in Fig. 1.

The transformed universe discourse is denoted as
X jðxjÞ ¼ �ajðxjÞEj ajðxlÞEj½ �; Y ðyÞ ¼ �bðyÞU bðyÞU½ �;
where aj (xj), b(y) are contraction–expansion factors. Generally speaking, we give the following contraction–expansion
factor (for detailed reasoning, refer to [21–24]); a(x) = 1 � kexp(�jx2), k2 (0,1), k > 0. The output of the variable uni-
verse fuzzy controller is represented as
uCðx̂=bÞ ¼ b
Xh
l¼1

Yn
j¼1

Ajl
x̂j

âðx̂jÞ

� �
yl: ð12Þ
From (12), we can select a reasonable b to optimize the adaptive laws.

3.2. The essence of variable universe fuzzy controller

The essence of variable universe fuzzy controller is an improved PD fuzzy controller. A conventional PD fuzzy con-

trol algorithm is
uðkÞ ¼ CeeðkÞ þ CDeeðkÞ; ð13Þ
where e(k) and De(k) are the values of error and the change of error at the kth sample time, respectively. If e(k) and
De(k) are fuzzy variable, (13) becomes a fuzzy control algorithm:
uðkÞ ¼ CU � F ðE;DEÞ ¼ CU � F ½CeeðkÞ;CDeDeðkÞ�; ð14Þ
where e(k) = desired value yr-output value y (at the kth sampling time), and De(k) = e(k) � e(k � 1).

3.3. Directive adaptive variable universe fuzzy controller

An adaptive fuzzy controller that uses fuzzy logic system as a model of the unknown plant is an indirect fuzzy con-

troller, which can incorporate fuzzy description of the unknown plant, but cannot incorporate the control rules. On the

other hand, an adaptive fuzzy controller that directly uses fuzzy logic system as a controller is a direct fuzzy controller,

which can incorporate control rules, but cannot incorporate fuzzy description of the unknown plant. In the paper, we

develop a direct adaptive fuzzy control.
Fig. 1. The change of universe discourse.
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Considering the error dynamical equation (9), select Lyapunov function
V ~e ¼
1

2
~eTP~e: ð15Þ
Differentiating (15) with respect to time, we have,
_V ~e ¼
1

2
_~e
T
P~eþ 1

2
~eTP _~e

¼ � 1
2
~eTQ~eþ ~eTPB ĝðx̂Þðu� � uD � uS � uCÞ þ ½ĝðx̂Þ � gðxÞ�ðuD þ uS þ uCÞ � df g

6 � 1
2
~eTQ~eþ j~eTPBjðjĝðx̂Þu�j þ jgðxÞðuD þ uCÞj þ jdjÞ � ~eTPBgðxÞuS

6 � 1
2
~eTQ~eþ j~eTPBjðjf ðxÞj þ jyðnÞr j þ jkTc êj þ jgðxÞðuD þ uCÞj þ jdjÞ � ~eTPBgðxÞuS: ð16aÞ
In order to design uS, such that _V ~e6 0. We can choose k to guarantee x � x̂. The following constraint conditions are

needed. Let fU(x), gL(x), gU(x) satisfy
jf ðxÞj6 fUðxÞ � fUðx̂Þ < 1;

0 < gLðx̂Þ � gLðxÞ6 gðxÞ6 gUðxÞ � gUðx̂Þ < 1;

x 2 UC; jdj6DN:

ð16bÞ
Observe (16a), using (16b), the supervisory control uS is chosen as
uS ¼ I� sgnð~eTPBÞ 1

gLðxÞ
gUðx̂ÞðuD þ uCÞ
�� ��þ gUðxÞ

gLðxÞ
fUðxÞ þ jynr j þ jkTc êj
� �

þ DN

� �
; ð17Þ
where,
I� ¼ 1 V ~e > V ;

0 V ~e 6 V ;

(
ð18Þ
V is a constant, which is chosen by the designer. Considering the case V ~e > V , substituting (4) and (17) into (16), we can
get
_V ~e 6 � 1
2
~eTQ~eþ j~eTPBj jf ðxÞj þ jyðnÞr j þ jkTc êj þ jgðxÞðuD þ uCÞj þ jdj

� �
� j~eTPBj gðxÞ

gLðxÞ
jgUðxÞðuD þ uCÞj þ

gUðxÞ
gLðxÞ

ðfUðx̂Þ þ jynr j þ jkTc ~ejÞ þ DN

� �

¼ � 1
2
~eTQ~eþ j~eTPBj �

�
jf ðxÞj þ jynr j þ jkTc êj þ jgðxÞðuD þ uCÞj þ jdj:

� gðxÞ
gLðxÞ

jgUðxÞðuD þ uCÞj þ
gUðxÞ
gLðxÞ

fUðxÞ þ jynr j þ jkTc ~ej
� �

þ DN

� ��
6 � 1

2
~eTQ~e: ð19Þ
Since uS plays the roles of ‘‘rough regulation’’, we can always guarantee V ~e 6 V . Because P is positive definite symmetry
matrix, V ~e 6 V implies the bounded of ~e, which in turn implies the bounds of ê and x̂. It is obvious that the supervisory
controller is nonzero when V ~e is greater than V . Thus, if the closed-loop system with fuzzy controller (5) is stable,

i.e. the error is small, and then the supervisory controller is idle. On the other hand, if the system tends to diverse, then

the supervisory controller begins to operate to force V ~e 6 V .
In order to adjust the parameters in the fuzzy system, we should derive the adaptive law. Hence, the optimal param-

eters are defined as following:
b� ¼ argmin
jbj6Nb

sup
jx̂j6Nx̂

ðu� � uDðx̂=bÞÞ
�����

�����
 !

;

a� ¼ argmin
jaj6Na

sup
jx̂j6Nx

ðgðxÞ � ĝðx̂=aÞÞ
�����

�����
 !

;

ð20Þ
where Nb andNa are compact sets of suitable bounds of a and b, respectively. Define the minimum approximate error as
h ¼ �ĝðx̂=aÞðu� � uDðx̂=b�ÞÞ þ ðuD þ uCÞðgðxÞ � ĝðx̂=a�ÞÞ þ d: ð21Þ
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The error dynamics (9) can be expressed as
_~e ¼ ðA� kCTÞ~eþ Bðĝðx̂=aÞðuDðx̂=b�Þ � uDðx̂=bÞ � uCÞ � ðuD þ uCÞðĝðx̂=a�Þ � ĝðx̂=aÞÞÞ � Bh � BgðxÞuS: ð22Þ
In order to derive the parameter adaptive laws to on-line tune the parameters a and b, we need to use the variable
universe adaptive fuzzy controller to approximate uDðx̂=bÞ, gðx̂=aÞ. Thus, we can obtain
uDðx̂=bÞ ¼ beðx̂Þ; eðx̂Þ ¼
Xh
l¼1

Yn
j¼1

Ajl
xj

aðxjÞ

� �
� yl;

ĝðx̂=aÞ ¼ agðx̂Þ; gðx̂Þ ¼
Xh
l¼1

Yn
j¼1

Ajl
xj

aðxjÞ

� �
� yl;

uC ¼
sup
tP 0

jhj

gLðxÞ
sgnðeTPBÞ;

ð23Þ
where uC is used to attenuate the effect of the approximate error and external disturbance on the tracking error. Thus,

the dynamics (22) can be expressed as follows:
_~e ¼ ðA� kcTÞ~eþ Bðĝðx̂=aÞ~beðx̂Þ � uDðx̂=bÞ~agðx̂Þ � ĝðx=a�ÞuCÞ � Bh � BgðxÞuS: ð24Þ
Define the following variables
~b ¼ b� � b; ~a ¼ a� � a; ð25Þ
where eðx̂Þ and gðx̂Þ are fuzzy basic elements.
In order to derive adaptive laws, we consider the following Lyapunov function:
V ¼ 1
2
~eTP~eþ 1

2v
~b
2 þ 1

2j
~a2: ð26Þ
Differentiate (26) with respect to time along the trajectory (24), then
_V ¼ 1
2
~eTP _~eþ 1

2
_~e
T
P~eþ

~b _~b
v

þ
_~a~a
j

¼ 1
2

ðA� kcTÞ~eþ B½ĝðx̂=aÞ~beðx̂Þ � uDðx̂=bÞ~agðx̂Þ � ĝðx=a�ÞuC� � Bh � BgðxÞuS
n oT

P~e

þ 1
2
~eTP ðA� kcTÞ~eþ B½ĝðx̂=aÞ~beðx̂Þ � uDðx̂=bÞ~agðx̂Þ � ĝðx=a�ÞuC� � Bh � BgðxÞuS

n o
þ

~b _~b
v

þ ~a _~a
j

¼ � 1
2
~eTQ~eþ

~b
v
½v~eTPBĝðx̂=aÞeðx̂Þ þ _~b� þ ~a

j
½ _~a � j~eTPBuDðx̂=bÞgðx̂Þ� � ~eTPBh � ~eTPBgðxÞuS

� ~eTPBĝðx=a�ÞuC: ð27Þ
Form the definition of uS; we know ~eTPBgðxÞuS > 0, if we choose the adaptive law as

_~b ¼ �v~eTPBĝðx̂=aÞeðx̂Þ; _~a ¼ j~eTPBuDðx̂=bÞgðx̂Þ: ð28Þ
Then, dynamics (27) can be expressed as,
_V 6 � 1
2
~eTQ~e� ~eTPBh � ~eTPBĝðx=a�ÞuC: ð29Þ
From (23), we can get
_V 6 � 1
2
~eTQ~e6 0; ð30Þ
we know that a*2Na, b*2Nb. Thus, if we can constrain a, b within the sets Na, Nb, then the uDðx̂=bÞ will be bounded.
From (17), we know that uS will be bounded, and it should be reminded that ~e would be bounded because of the super-
visory controller. Obviously, the adaptive law (28) cannot guarantee that a2Na, b2Nb, therefore all the adaptive laws
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should be modified using the parameter projection algorithms, such that all the parameters will remain inside the con-

straint sets. The modified algorithm is shown as following:
Pr oj½v~eTPBĝðx̂=aÞeðx̂Þ� ¼ v~eTPBĝðx̂=aÞeðx̂Þ � v~eTPBĝðx̂=aÞ aaT

jaj2
eðx̂Þ;

Pr oj½j~eTPBuDðx̂=bÞgðx̂Þ� ¼ j~eTPBuDðx̂=bÞgðx̂Þ � j~eTPBuDðx̂=bÞ
bbT

jbj2
gðx̂Þ:

ð31Þ
Using the projection algorithm to tune the parameter vector a, b, we can get:
_b ¼ v~eTPBĝðx̂=aÞeðx̂Þ if jbj6Nb ðor jbj ¼ Nb and ~eTPBĝðx̂=aÞaTeðx̂Þ6 0Þ;
Pr ojðv~eTPBĝðx̂=aÞeðx̂ÞÞ if jbj ¼ Nb and ~eTPBĝðx̂=aÞaTeðx̂ÞP 0;

(
ð32Þ

_a ¼ j~eTPBuDðx̂=bÞgðx̂Þ if jaj6N a ðor jaj ¼ N a and ~eTPBuDðx̂=bÞbTgðx̂Þ6 0Þ;
Pr ojðj~eTPBuDðx̂=bÞgðx̂ÞÞ if jaj ¼ N a and ~eTPBuDðx̂=bÞbTgðx̂ÞP 0:

(
ð33Þ
Following the preceding, we have the following theorem:

Theorem. Consider the plant (2) with the control law (5), where uCðx̂=bÞ is given by (12) and uS is given by (17). The

parameter vector a, b is on-line tuned by the adaptive (32) and (33). Then, the parameters a, b and observe state vector x̂ of

the plant (2) will be globally bounded, i.e. satisfying the following conditions:
jbj6Nb; jaj6N a;

jx̂j6 jyrj þ
2V ~e

kP̂ min

� �1
2

¼ N x̂:
ð34Þ
Moreover, using the corollary of Barbalet�s lemma, we can get limt!1j~eðtÞj ¼ 0.

Proof. Select the Lyapunov function V b ¼ 1
2
bTb, if the first line of (32) is true, then:

(i) jbj 6 Nb, and _V b ¼ v~eTPBĝðx̂=aÞaTeðx̂Þ6 0. Thus, _b6 0.

(ii) jbj = Nb, and _V b ¼ v~eTPBĝðx̂=aÞaTeðx̂Þ6 0. Thus, _b6 0.

If the second line of (32) is true, i.e. jbj = Nb. Differentiate V b ¼ 1
2
bTb with respect to time. Then, we can get
_V b ¼ ~eTPBbTĝðx̂=bÞeðx̂Þ � ~eTPBĝðx̂=bÞ jbj
2bTeðx̂Þ
jbj2

¼ 0: ð35Þ
So, we can get jbj 6 Nb. Using the same method, we can get
jaj6N a: ð36Þ
Because of V ê 6 V ê, i.e.
1
2
kP minjêj26 1

2
êTP ê6 V ê, where kPmin is the minimum eigenvalue of the matrix P. After simple

manipulation, we can obtain jêj6 2V
kP min

� �1
2

. Together with ê ¼ yr � x̂, we have
jx̂j6 jyrj þ
2V

kP min

� �1
2

" #
¼ N~̂x: ð37Þ
From (30), we can obtain
_V 6 � ~eTQ~e6 � kQmin

2
j~ej2; ð38Þ
where kQmin is the minimum eigenvalue of the matrix Q. Integrating both sides of (38), after simple manipulations, we

can obtain
Z t

0

j~eðfÞj2 d16 2

kQmin�1
ðjV ð0Þj þ jV ðtÞjÞ: ð39Þ
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From (39), we know, ~e 2 L2, ~e 2 L1. Since all the variables will be bounded in (22), then _~e 2 L1. By the Barbalat�s
theorem,
lim
t!1

ðj~eðtÞjÞ ¼ 0: � ð40Þ
4. Example

In the section, we will apply the proposed control algorithm to control the Duffing chaotic system and Chua�s cha-
otic circuit to track a sine-wave trajectory.

Example 1. Consider the Duffing chaotic system whose dynamics is as following:
_x1 ¼ x2;

_x2 ¼ �0:1x2 � x31 þ 12 cos t þ uðtÞ þ d;

�

y ¼ 1 0½ �
x1
x2

� �
;

ð41Þ
where u(t) is control input; d is bounded external disturbance. If u(t) = 0, then the system is chaotic system. The trajec-

tories of the states x1 and x2 are shown in Figs. 2 and 3, respectively. The phase plane is shown in Fig. 4.
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Fig. 2. The trajectory of x1 without controller.
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Fig. 3. The trajectory of x2 without control.
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Using the variable universe fuzzy controller via output feedback to control Duffing chaotic system in order to force

the states x1 and x2 to track the given bounded reference signals yr(t) = sin(t) and _yrðtÞ ¼ cosðtÞ. If the supervisory
controller and robust controller are not appended to the fuzzy controller, the observable results and tracking results are

not good. The trajectories of x1, x̂1 and x2, x̂2 are shown in Figs. 5 and 6, respectively. The desired output yr and the

actual output y are shown in Fig. 7. From these figures, we can see that there exists error between the actual states and

the observable states. Moreover, the desired output is not tracked by the actual output completely. Thus, the

supervisory controller and robust controller need be appended to the variable universe fuzzy controller in order to

control the Duffing chaotic system. The simulation results are shown as follows. In order to satisfy the constraint

conditions in design, define the following functions:
fUðx1; x2Þ ¼ 13þ jx31j � 13þ jx̂31j ¼ fUðx̂1; x̂2Þ;

gUðx1; x2Þ � gUðx̂1; x̂2Þ ¼ 1:03;

gLðx1; x2Þ � gLðx̂1; x̂2Þ ¼ 0:59:

ð42Þ
Let the external disturbance d be a step signal. The membership functions of the error and the error change are shown

in Figs. 8 and 9.
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Fig. 5. The trajectory of x1 and x̂1 only with uCðx̂=bÞ.
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Fig. 6. The trajectory of x2 and x̂2 only with uCðx̂=bÞ.
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Fig. 7. The trajectory of y and yr only with uCðx̂=bÞ.
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Summarizing the above discussion, the design algorithm is described as followings:

Step 1: The observer gain vector is selected as kT ¼ 93 189½ �, the feedback gain vector is chosen as kTc ¼ 1 2½ �.
Step 2: We select Q in (10b) as Q ¼ 11 13

13 28

� �
. By solving (10b), We can obtain the positive definite symmetry matrix

P ¼ 29 �14
�14 7

� �
. After simple manipulation, the minimum eigenvalue of matrix Q, kQmin = 3.23.
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Step 3: The membership functions are selected as follows:
eNB ¼ minð1;maxð0;�3e=2� 2ÞÞ; eNM ¼ maxð0;minð3e=2þ 3;�3e=2� 1ÞÞ;
eNS ¼ maxð0;minð3e=2þ 2;�3e=2ÞÞ; eZE ¼ maxð0;minð3e=2þ 1;�3e=2þ 1ÞÞ;
ePM ¼ maxð0;minð3e=2� 1; 3e=2þ 3ÞÞ; ePS ¼ maxð0;minð3e=2;�3e=2þ 2ÞÞ;
ePB ¼ minð1;maxð0; 3e=2� 2ÞÞ; _eNB ¼ minð1;maxð0;�3 _e=8� 2ÞÞ;
_eNM ¼ maxð0;minð3 _e=8þ 3;�3 _e=8� 1ÞÞ; _eNS ¼ maxð0;minð3 _e=8þ 2;�3 _e=8ÞÞ;
_eZE ¼ maxð0;minð3 _e=8þ 1;�3 _e=8þ 1ÞÞ; _ePS ¼ maxð0;minð3 _e=8;�3 _e=8þ 2ÞÞ;
_ePM ¼ maxð0;minð3 _e=8;�3 _e=8þ 3ÞÞ; _ePB ¼ minð1;maxð0; 3 _e=8� 2ÞÞ:
Step 4: By solving (9), we can obtain x̂. The initial value of state vector is selected as xð0Þ ¼ 2 2½ �.
Step 5: Using (32), (33) to on-line tune parameters a, b.

The trajectories of x1 and x̂1, x2 and x̂2 are shown in Figs. 10 and 11, respectively. From these figures, we can see x̂1
and x̂2 can track x1 and x2 quickly. The actual output y and the desired output yr are shown in Fig. 12 in which y can

track yr quickly, moreover the overshoot is smaller than 0.2%. Fig. 13 shows the phase plane of Duffing with uCðx̂=bÞ
and uS, uC.

Example 2. The typical Chua�s circuit is shown in Fig. 14, which consists of one linear resistor (R), two capacitors (C1,
C2), one inductor (L) and a piecewise-linear resistor (g). Chua�s has shown to posses very rich nonlinear dynamics such
as chaos. Because of its universality, Chua�s circuit has attracted much attention and has become a prototype for the
investigation of chaos. The dynamic equations of the Chua�s chaotic circuit are written as
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Fig. 10. Trajectory of x1 and x̂1 with uCðx̂=bÞ and uS, uC.
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Fig. 13. The phase plane with uCðx̂=bÞ and uS, uC.
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Fig. 14. Chua�s chaotic circuit.
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_V C1 ¼
1

C1
1

R
ðV C2 � V C1Þ � gðV C1Þ

� �
;

_V C2 ¼
1

C2
1

R
ðV C1 � V C2Þ þ iL

� �
;

_iL ¼ 1
L
ðV C1 � R0iLÞ;

ð43Þ
where VC1, VC2 and iL are states variables; R0 is a constant; and g denotes the nonlinear resistor, which is a function of

the voltage across the two terminals of C1. Here we define g as a cubic function as in (44), and its diagram is shown in

Fig. 15 [25], where V C1 2 �d d½ �, d > E > 0:
gðV C1Þ ¼ aV C1 þ cV 3C1 ða < 0; c > 0Þ: ð44Þ
From Fig. 25, the bounds for g(VC1) are obtained
g1ðV C1Þ ¼ aV C1; g2ðV C1Þ ¼ ðaþ cd2ÞV C1: ð45Þ
The system (43) can be rewritten as
_z ¼ GzðtÞ þ Hg; ð46Þ
where z ¼ z1 z2 z3½ �T ¼ V C1 V C2 iL½ �T
G ¼
� 1

C1R
1

C1R
0

1
C2R

� 1
C2R

1
C2

0 � 1
L � R0

L

2
664

3
775; H ¼

� 1
C1

0

0

2
64

3
75: ð47Þ
The obtained state space is not in the standard canonical form defined in (2). Therefore, we need to perform a linear

transformation to transform them into the form of (2). Define z*(t) = T�1z(t), where T is a transformation matrix.

Using the transformation in [26], the transformed system can be obtained as
_z�ðtÞ ¼ T�1GT z�ðtÞ þ T�1Hg ¼ G�z�ðtÞ þ H �g; ð48Þ
Fig. 15. Nonlinear resistor characteristics.
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where G* = T�1GT, H* = T�1H:
T ¼
� RþR0

C1C2RL
� RR0C2þL

C1C2RL
� 1

C1

� R0
C1C2RL

� 1
C1C2R

0

1
C1C2RL

0 0

2
664

3
775; G� ¼

0 1 0

0 0 1

� 1

C1C2RL
� C1RþC2R0þC1R0

C1C2RL
� C1C2RR0þC2LþC1L

C1C2RL

2
64

3
75:
Choose the parameters of the Chua�s chaotic circuit as following:
R ¼ 1:428; R0 ¼ 0; C1 ¼ 1; C2 ¼ 9:5; L ¼ 1:39; a ¼ �0:8; c ¼ 0:044:
Therefore, after simple manipulations, we get the transformed system as followings:
_z�1 ¼ z�2; _z�2 ¼ z�3; _z�3 ¼
14

1485
z�1 �

168

9025
z�2 þ

1

38
z�3 �

2

45

28

321
z�1 þ

7

95
z�2 þ z�3

� �3
: ð49Þ
We will design a variable universe adaptive fuzzy controller with a supervisory controller to force the transformed sys-

tem to track the given reference signal. For connivance, let x replace z* in (49), therefore, the closed-loop system (49)

can be represented as
_x1
_x2
_x3

2
64

3
75 ¼

0 1 0

0 0 1

0 0 0

2
64

3
75�

x1
x2
x3

2
64

3
75þ

0

0

1

2
64
3
75ðf þ guþ dÞ; ð50Þ

y ¼ 1 0 0½ �
x1
x2
x3

2
64

3
75;
where f ¼ 14
1805

x1 � 168
9025

x2 þ 1
38
x3 � 2

45
� 28

321
x1 þ 7

95
x2 þ x3

� �3
, g = 1, d is the bounded external disturbance. If u = 0, then

the system (50) is chaotic system, the trajectories of the state variables x1, x2, x3 are shown in Figs. 16–18.

The phase-plane trajectory of x1x2 is shown is in Fig. 19. The phase-plane trajectory of x1x3 is shown in Fig. 20. The

phase-plane trajectory of x2x3 is shown in Fig. 21. Fig. 22 shows the space phase-plane trajectory of x1x2 x3.

We design a variable universe adaptive fuzzy controller with a supervisory controller and a robust controller to force

the output y of the system to track the given reference signal yr. In order to satisfy the constrain conditions (16b) in

design, we define the following functions:
jf ðxÞj6 14

1805
� jx1j þ

168

9025
� jx2j þ

1

38
jx3j þ

2

45
� 28

321
� jx1j þ

7

95
� jx2j þ jx3j

� �3

6
14

1805
� 50þ 168

9025
� 10þ 1

38
� 2þ 2

45
� 28

321
� 50þ 7

95
� 10þ 2

� �3
6 13:54 � fUðxÞ � fUðx̂Þ; ð51Þ

gUðxÞ � gUðx̂Þ ¼ 1:1; gLðxÞ � gLðx̂Þ ¼ 0:9:
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Fig. 16. The x1 without control.



-40 -30 -20 -10 0 10 20 30 40
-20

-15

-10

-5

0

5

10

15

20
the phase plane of chua's chaotic

x1

x2

Fig. 19. The phase-plane of x1 and x2 without control.

0 50 100 150 200 250 300 350 400
-1

-0.8
-0.6
-0.4
-0.2

0

0.2
0.4
0.6
0.8
1

the trajectory of x3

time(sec)

x3

Fig. 18. The x3 without control.

0 50 100 150 200 250 300 350 400
-5
-4
-3
-2
-1
0
1
2
3
4
5

the trajectory of x2

time(sec)

x2

Fig. 17. The x2 without control.
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Let the external disturb d is step signal. The membership functions of error and error change are shown in Figs. 8 and 9,

respectively.

According to the design procedure, the design is given in the following steps:

Step 1: The observer gain vector is chosen as kTc ¼ 5 237 3½ �; the feedback gains vector is selected as

kTc ¼ 12 13 3½ �. The adaptive coefficient c = 0.003808.



-40 -30 -20 -10 0 10 20 30 40

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8
1

the phase tracjectory of x1 and x3 without control

x1

x3

Fig. 20. The phase-plane of x1x3 without control.

-8 -6 -4 -2 0 2 4 6 8
-1.5

-1

-0.5

0

0.5

1

1.5

2
the phase trajecrory of x2 and x3 without control 

x2

x3

Fig. 21. The phase-plane of x2x3 without control.

-40 -30-20-10 0 10 20 30 40

-4
-2

0
2

4
-0.6

-0.4
-0.2

0
0.2

0.4
0.6

x1x2

x3

Fig. 22. The space phase-plane of x1x2x3 without control.

1028 W. Jiang et al. / Chaos, Solitons and Fractals 23 (2005) 1013–1032



W. Jiang et al. / Chaos, Solitons and Fractals 23 (2005) 1013–1032 1029
Step 2: We choose
Q ¼
1 0 0

0 1 0

0 0 1

2
64

3
75
in (10b), and then solving (10b), we can obtain the positive definite symmetric matrix
P ¼
143:2233 �3 �0:7056

�3 0:7055 �3
�0:7056 �3 237:1759

2
64

3
75;
and the minimum eigenvalue of Q, i.e. kQmin is 6.
Step 3: The membership functions of e and _e are selected same as the Duffing system.
Step 4: By solving (9), we can obtain x̂.

Step 5: Use (32), (33) to on-line tune the parameters a and b.

With the proposed control algorithms, the simulation results are shown as following: the trajectories of x1 and x̂1, x2
and x̂2 are shown in Figs. 23, 24 respectively. From these figures, we can see that x̂1 and x̂2 can track x1 and x2 quickly.

The responses of the Chua�s chaotic circuit are shown in Figs. 25–27, respectively. The controlled phase-plane trajectory
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Fig. 24. The controlled x2 and x̂2.
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of x1 x2 is shown in Fig. 28. The controlled space phase-plane trajectory of x1, x2, x3 is shown in Fig. 29, which clearly

indicates that the tracking performances are guaranteed by our control algorithms.
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5. Conclusion

In the paper, a variable universe adaptive fuzzy controller via output-feedback is investigated. The novel types of

controllers can on-line tune the contraction and expansion factor. Thus, a number of fuzzy rules are generated. Con-

ventional T–S fuzzy controller must on-line tune all the consequent parameters, which are the centre values of output

membership functions. Thus, the realization is difficult. But the variable universe fuzzy controller only on-line tunes the

contraction and expansion factor. Thus, the speed of simulation is quick. The supervisory controller is applied to force

the states within the compact set. If the variable universe fuzzy controller works well, the supervisory controller is idle; if

the system only with variable universe fuzzy controller tends to be unstable, the supervisory controller begins to work in

order to guarantee stability. Thus, all the signals involved are bounded. The robust controller is used to attenuate the

effect of both approximate error and external disturbance on the tracking error. The proposed control approach is

applied to Duffing chaotic system and Chua�s chaotic circuit; the simulation results show that the control algorithm
is effective.
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