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Abstract

This paper presents a stable neuro-fuzzy (NF) adaptive control approach for the trajectory tracking of the
robotic manipulator with poorly known dynamics. Firstly, the fuzzy dynamic model of the manipulator is
established using the Takagi–Sugeno (T–S) fuzzy framework with both structure and parameters identi/ed
through input=output data from the robot control process. Secondly, based on the derived fuzzy dynamics of
the robotic manipulator, the dynamic NF adaptive controller is developed to improve the system performance
by adaptively modifying the fuzzy model parameters on-line. The dynamic NF system aims to approximate
the whole robot dynamics rather than its nonlinear components as is done by static neural networks. The
dynamic inversion introduced for the controller design is constructed by the dynamic NF system and will
help the NF controller design because it does not require the assumption that the robot states should be
within a compact set. It is generally known that the compact set cannot be speci/ed before the control
loop is closed. Thirdly, the system stability and the convergence of tracking errors are guaranteed by Lya-
punov stability theory, and the learning algorithm for the dynamic NF system is obtained thereby. Finally,
simulation studies are carried out to show the viability and e2ectiveness of the proposed control approach.
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1. Introduction

Research e2orts for synthesizing neural networks (NNs) with fuzzy logic have been very intensive
in the last several years and have generated three major integrated systems: neuro-fuzzy (NF) sys-
tems, fuzzy NNs and fuzzy neural hybrid systems [10]. These integrated systems possess advantages
of both NNs and fuzzy systems, where NNs provide an essentially low-level learning and computa-
tional power to process large amounts of data while fuzzy logic provides a structural framework that
utilizes and exploits those low-level capabilities of NNs. This property makes the integrated systems
to be more powerful than the pure fuzzy systems or NNs in the modeling and control of nonlinear
dynamical systems.
Dynamic NF systems, the NN realization of dynamic fuzzy systems, have the same structure as

recurrent NNs. Their inherent memories with feedback connections in dynamics make them suitable
for dynamic system modeling and control. Like dynamic NNs, dynamic NF systems not only can
simulate some dynamic behaviors such as limit cycles and chaos, but also may provide fast conver-
gence speed with small network size as compared with recurrent NNs [7]. Unlike static NF systems,
dynamic NF systems are used to approximate the whole system dynamics, instead of only their non-
linear components. There are two types of dynamic NF systems used recently. One is constructed
using dynamic systems in the form of Takagi–Sugeno (T–S) fuzzy model [23], and the other using
static NF system with dynamic element [9].
Since dynamic NF systems are essentially fuzzy systems with the kind of automatic tuning meth-

ods from NNs, stable dynamic NN-based adaptive control approaches are suitable for all the control
frameworks using dynamic NF systems. Recently, some important works in this /eld have been
presented, representative examples are direct and indirect stable adaptive control schemes based
on a recurrent NN model of the unknown system by Rovithakis and Christodoulou [13, 12], and
Hop/eld-type dynamic NN-based identi/cation and control of nonlinear systems [11]. However,
there is few works in the stable adaptive control based on dynamic NF systems so far. Dynamic
NF systems constructed with the dynamic T–S fuzzy model are most widely used in robust and
optimal controller design [3, 2], while researches on stable adaptive control of nonlinear systems
almost focus on using static NF networks in the form of T–S fuzzy model. These works include
stable adaptive fuzzy control for feedback linearizable dynamical systems [5, 16] and NF adap-
tive controller design for robotic manipulators based on sliding mode [17]. Furthermore, the dy-
namic NF system constructed by static NF system with dynamic element, which has been used
in the identi/cation and control of Hexible-link manipulators by Lee [9], has a similar topologi-
cal structure to recurrent NNs by Rovithakis [13, 12]. However, in either the dynamic NF systems
[9] or the dynamic NNs used in [13, 12], inputs to nonlinear components in their dynamic NF
systems are states of the original plant instead of states of dynamic NF system itself. Though
these structures are good for mathematical tractability in the derivation of the control law and
learning algorithm, and also helpful for the stability of the system in the initial learning of the
NF system, the dynamic NF system they proposed is not a true dynamic system. Another prob-
lem concerned with the NF adaptive control is that most adaptive control approaches based on
NF systems require the system states to be within a compact set for the well-de/ned approxima-
tion. However, the approximation equation may not be true during on-line learning because states
of system could be outside the approximation region before the stability of the whole system is
achieved.
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This paper is to develop the stable adaptive control based on dynamic NF systems for the tra-
jectory tracking of the manipulator with poorly known dynamics. Gustafson–Kessel fuzzy clustering
algorithm and least-squares optimization method are used to obtain the dynamic T–S fuzzy model
of robot dynamics. By using fuzzy composition operation, the dynamic T–S fuzzy model of the
robotic manipulator can be represented in some forms of the dynamic NN. The input to the non-
linear function components in the dynamic NF system is its own state, which makes our dynamic
NF system be a true dynamic one. Furthermore, the dynamic inversion constructed by the dynamic
NF system is used as the control input to the practical plant, which makes the dynamic NF system
determined through design in advance and excludes the assumption that the input to the dynamic NF
system should be within a compact set. Finally, the proposed dynamic NF-based adaptive controller
is illustrated with simulations of a two-link manipulator.
The rest of the paper is organized as follows. In Section 2, some fundamentals of the robot model

and controller design are reviewed. In Section 3, the adaptive controller design using dynamic NF
systems is introduced together with a complete control structure and the learning algorithms for
parameter adaptation. The proof of the stability and tracking error convergence is also presented in
this section. Section 4 shows a simulated example. Finally, the features of the proposed dynamic
NF adaptive controller are concluded.

2. Problem statement

2.1. Notation

Standard notation is used in this paper. Let R be the real number set, R+ be the positive real
number set, Rn be the n-dimensional vector space, and Rn×n be a real matrix space. In particular, the
norm of a vector x=(x1; : : : ; xn)∈Rn and that of a matrix A=(ai; j)∈Rn×n are de/ned, respectively,
as

‖x‖ =
√
xTx; ‖A‖=

√
tr(ATA) (1)

with tr(·) the trace of a matrix. Moreover, for any positive de/nite symmetric matrix A(x) and for
any x, we denote the minimum and maximum eigenvalues of A(x) by Am and AM , respectively. Let
f(t)=(f1; : : : ; fn)T be a vector function of time, de/ne

‖f(t)‖∞ = ess sup
t∈R

|f(t)|; (2)

where | · | denotes the norm in Rn. We say f(t)∈L∞ if ess supt¿0 |f(t)|¡0. Finally, we recall from
[21] the following de/nition.

De�nition 1 (Vidyasagar [21]). Consider the nonlinear system, ẋ=f(x; u), y=h(x) where x is a state
vector, u is the input vector and y is the output vector. The solution is uniformly ultimately bounded
(UUB) if for all x(t0)=x0, there exists �¿0 and T (�; x0) such that ‖x(t)‖¡� for all t¿t0 + T .
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2.2. Robot dynamic equation and properties

The general equation describing the dynamics of an n-degree of freedom rigid robot is given by

M (q) Oq+ C(q; q̇)q̇+ G(q) + F(q; q̇) = u(t); (3)

where q; q̇∈Rn are the vectors of generalized coordinates and velocities, M (q)∈Rn×n the positive
inertia matrix, C(q; q̇)q̇∈Rn the Coriolis and centrifugal torques, G(q)∈Rn the gravitational torque,
u(t)∈Rn the applied torque. F(q; q̇)∈Rn is the unstructured uncertainty of the dynamics including
friction and other disturbances. The following properties of the robot dynamics are required for the
subsequent development.

Property 1. M (q) is a positive symmetric matrix de/ned by Mm6‖M (q)‖6MM with Mm, MM¿0
being known constants.

Property 2. C(q; q̇) de/ned by using the Christo2el symbols, satis/es that
• Ṁ (q)− 2C(q; q̇) is skew symmetric;
• ‖C(q; q̇)‖6CM‖q̇‖ and C(q; y)x = C(q; x)y, x; y∈Rn, CM¿0.
Eq. (3) can be represented in the form of state equation

ẋ = PAx + f(x) + B(x)u(x); (4)

where x=(qT; q̇T)T denotes the system state vector, and

PA =
[
0 I
0 0

]
; f(x) =

[
0

−M−1(q)(C(q; q̇)q̇+ G(q) + F(q; q̇))

]
; B(x) =

[
0

M−1(q)

]
: (5)

2.3. Dynamic NF systems

The robot dynamic equation can be represented by the following dynamic T–S fuzzy model which
is described by fuzzy IF–THEN rules.

Rule i:
If z1(t) is Fi1, z2(t) is Fi2; : : : ; zp(t) is Fip
then

ẋ = PAx + Pfi(x) + PBi(x)u(t); i = 1; : : : ; m; (6)

where Fij (i=1; 2; : : : ; m; j=1; 2; : : : ; p) are fuzzy sets described by membership function Aij(zj(t)),
x(t)∈R2n the state vector, u(t)∈Rn the input vector. Besides, it is assumed that PBi(x)= PBi, Pfi(x)=
PAix + Pbi, where PAi∈R2n×2n, PBi∈R2n×n and Pbi∈R2n are constant matrices and vector, respectively.
m is the number of fuzzy rules, and z1(t)∼zp(t) are some measurable variables, i.e. the premise
variables.

2.4. Fuzzy model identi;cation

Fuzzy modeling or identi/cation aims at /nding a set of fuzzy if-then rules with well-de/ned pa-
rameters, which can describe the given input=output (I=O) behavior of the process. For dynamic T–S
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fuzzy model (6), Gustafson–Kessel fuzzy clustering algorithm described in [1] is used to determine
fuzzy space partition, initial positions of membership functions, while consequent parameters can be
obtained under the given structure on the measured I=O data using the following global least-squares
optimization method.
The dynamic T–S fuzzy model (6) can be computed using fuzzy composition operation as below

ẋ(t) =

(
m∑
i=1

!i(z(t)) QAi

)
x(t) +

(
m∑
i=1

!i(z(t)) PBi

)
u(t) +

m∑
i=1

!i(z(t)) Pbi; (7)

where QAi= PA + PAi (i = 1; : : : ; n). Obviously, (7) is in some forms of dynamic NN, where the input
to nonlinear components in the dynamic NF system is its own state such that a real dynamic NF
system is constructed. Furthermore, (7) can also be written as

ẋ(t) = ( QA1; : : : ; QAm; PB1; : : : ; PBm; Pb1; : : : ; Pbm)(!(z(t))⊗ xT(t); !(z(t))⊗ uT(t); !(z(t)))T

= "̂#(x(t); u(t); !(z(t))); (8)

where “⊗” denotes Kronecker product, and
"̂ = ( QA1; : : : ; QAm; PB1; : : : ; PBm; Pb1; : : : ; Pbm) ∈ R2n×na ; na = (3n+ 1)m;

#(x(t); u(t); !(z(t))) = (!(z(t))⊗ xT(t); !(z(t))⊗ uT(t); !(z(t)))T ∈ Rna ;

(9)
$i(z(t)) =

p∏
j=1

Aij(zj(t)); !i(z(t)) = $i(z(t))

/
m∑
j=1

$j(z(t));

z(t) = (z1(t); z2(t); : : : ; zp(t)); !(z(t)) = (!1(z(t)); : : : ; !m(z(t))):

By using least-squares optimization method, parameter vector "̂ can be solved as follows:

"̂T = (%T(!; x; u)%(!; x; u))−1%T(!; x; u)X

with %(x; u; !)=(#(x(1); u(1); !(z(1))); : : : ; #(x(N ); u(N ); !(z(N ))))T, and

X =(ẋ(1); ẋ(2); : : : ; ẋ(N ))T: (10)

After the consequent parameters of (6) are determined by global least-squares optimization method,
premise parameters can be easily obtained using $it given in Section 4.1 of [1]. For bell-typed
membership functions [8]

Aij(zj(t)) = EXP{−(zj − cij)2=)2ij}; i=1; : : : ; m; j=1; : : : ; p (11)

and the center and width of the jth membership function of the ith fuzzy rule can be determined as

cij =
N∑
t=1

$itzj(t)

/
N∑
t=1

$it; )ij = *

√√√√ N∑
t=1

$it(zj(t)− cij)2
/

N∑
t=1

$it ; (12)

where * denotes a scale factor, which can be selected according to the /tting precision of least-
squares optimization method.
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3. Dynamic NF adaptive controller design for a robot

In this section, a design approach of NF adaptive controller based on dynamic inversion will be
developed for robot control. The goal is to design a control law u(t) that ensures that the robot joint
displacement q(t) follows the desired state trajectory qd(t). The adaptive NF controller is developed
in the following steps. First, the dynamics of tracking error metric is derived for a robot manipulator
that is described in the form of dynamic T–S fuzzy model. Then a dynamic NF system is constructed
to approximate the robot dynamics, and the dynamic inversion control is obtained thereby. Finally,
a composite controller composed of the dynamic inversion control and a PD type control is proposed,
and its learning algorithm and global stability proof of the closed-loop control system are also given.

3.1. The dynamics of tracking error metric for a robot modeled by T–S fuzzy model

The following tracking error metric is de/ned for the NF adaptive controller design:

S = C(x − xd); (13)

where S=(s1; : : : ; sn)T; x(t)=(qT; q̇T)T; xd=(qTd ; q̇
T
d )
T is the desired state trajectory to be tracked, and

C=[r; I ]∈Rn×2n, r=rT¿0. Usually, r is chosen as r=diag(-1; : : : ; -n)¿0. If the only source of
high-frequency unmodeled dynamics is assumed to be the /nite sampling, it is shown by Slotine
[15] that -i (i=1; : : : ; n) can be determined by -i 6 0:25=), where ) is the sampling period.
Substituting the state equation presented by the ith fuzzy rule in (6) into the derivative of (13),

we have

Ṡ = C(ẋ − ẋd) = −rS + h+ C PAix + C Pbi + C PBiu; (14)

where

h = C PAx + rS − Cẋd : (15)

It is easy to verify that Gi=C PBi∈Rn×n is a positive and symmetric matrix (see (5)), so multiplying
G−1 to both sides of (14) gives

G−1
i Ṡ = −G−1

i rS + G−1
i h+ G−1

i C PAix + G−1
i C Pbi + u: (16)

De/ne S̃= Ṡ + rS; Ai=Gi
−1C PAi∈Rn×2n, bi=G−1

i C Pbi∈Rn, then (16) can be written

G−1
i S̃ = G−1

i h+ Aix + bi + u: (17)

Eq. (17) represents the tracking error dynamics in the subspace de/ned by the ith fuzzy rule. By
using center-average defuzzi/er, product inference, and singleton fuzzi/er, the error dynamics in the
whole state space can be obtained using fuzzy composition as follows:

m∑
i=1

!i(z(t))G−1
i S̃ =

m∑
i=1

!i(z(t))G−1
i h+

m∑
i=1

!i(z(t))(Aix + bi) + u; (18)

where !i(z(t)) (i=1; : : : ; m) are de/ned in (9) and Aij(zj(t)) is in the form of bell-typed Gaussian
function shown in (11).
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De/ne G−1=
∑m

i=1 !i(z(t))G
−1
i , we have the tracking error dynamics of the robotic manipulator

as

G−1S̃ =
m∑
i=1

!i(z(t))G−1
i h+

m∑
i=1

!i(z(t))(Aix + bi) + u: (19)

3.2. The dynamics of tracking error metric for a dynamic NF system

Usually, the dynamic T–S fuzzy model constructed by fuzzy model identi/cation method given in
Section 2.4 is only a rough approximation to the robot dynamics. For accurate trajectory tracking of
the robotic manipulator, a stable adaptive control approach using dynamic NF system will be devel-
oped, where the NF system can be adapted by learning algorithms for updating its free parameters
such that the approximation performance of the NF system can be improved on-line. The following
dynamic NF system with the same antecedents as that in (6) is constructed to approximate the robot
dynamics shown in (3) as

Rule i:
If z1(t) is Fi1, z2(t) is Fi2; : : : ; zp(t) is Fip
then

˙̂x = PAx̂ + P̂fi(x̂) + P̂Bi(x̂)(u− up); (20)

where Fij (i=1; 2; : : : ; m; j=1; 2; : : : ; p) are fuzzy sets described by membership function Aij(zj(t)),

x̂=(q̂T; ˙̂qT)T∈R2n is the state vector of the NF system. Besides, assume that P̂Bi(x̂)= P̂Bi; f̂i(x̂)= P̂Aix̂+P̂bi,

and P̂Ai∈R2n×2n P̂Bi∈R2n×n and P̂bi∈R2n denote the estimates of PAi PBi and Pbi. up is a robust control
component which will be de/ned later, and as x→ xd, up → 0 then the NF system constructed is
equivalent to the robot system in terms of state and control input.
The tracking error metric for the dynamic NF system (20) can be de/ned as

S0=C(x̂ − xd): (21)

By the same derivation as that of (19), S0 dynamics in the whole fuzzy space can be written as

G−1
F S̃0=

m∑
i=1

!i(z(t))Ĝ
−1
i ĥ+

m∑
i=1

!i(z(t))(Âix̂ + b̂i) + u− up; (22)

where G−1
F =

∑m
i=1 !i(z(t))Ĝ

−1
i with Ĝi=C P̂Bi, S̃0= Ṡ0 + r0S0, Âi=Ĝ−1

i C P̂Ai, b̂i=Ĝ−1
i C P̂bi, r0¿0 is

a design parameter used to assign the dynamics of S0, and ĥ=C PAx̂ + r0S0 − Cẋd.

Remark 1. The universal approximation power of the dynamic NF system in the form of (6) has
been proved in [22]. Furthermore, Johansen and Shorten [6, 14] also consider its interpretation and
identi/cation. Evidently, for approximating the dynamic NF fuzzy model (6) by using dynamic NF
system (20), the suWcient and necessary condition will be P̂Ai → PAi, P̂Bi → PBi, P̂bi → Pbi (i=1; : : : ; m) if
the membership functions are chosen appropriately. For these, Âi, Ĝi and b̂i (i=1; : : : ; m) are termed
as the estimates of parameter matrices Ai, Gi and vector bi.
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3.3. NF dynamic inversion

Dynamic inversion used in the controller design is de/ned as the inverse model of the dynamic
NF system shown in (20) with state speci/ed by desired dynamics, which is similar to the stable
inversion proposed by Chen and Zhao [4]. Stable inversion is the inverse model of the multivariable
system with desired state trajectory as its model input, which guarantees that the inverse model is
always bounded. For a dynamic NF system (20), if the desired dynamics is chosen as

Ṡ0 = −r0S0 (23)

then the dynamic inversion of the dynamic NF system is obtained from (22) as

uI (t) = us(t)− up(t) = −
m∑
i=1

!i(z(t))Ĝ
−1
i ĥ−

m∑
i=1

!i(z(t))(Âix̂ + b̂i): (24)

Since x̂ will converge to the desired trajectory speci/ed by dynamics (23), the only di2erence
between dynamic inversion and stable inversion lies in the initial stage of the control process. The
advantage from dynamic inversion is that the initial state trajectory x̂ can be designed in advance
such that good dynamic performance of the closed-loop system is guaranteed. Besides, dynamics
relation (23) ensures the state of the dynamic NF system to be in the compact set strictly such
that the dynamic inversion always exists. It will be proven that the dynamic NF system (20) will
approximate the robot dynamics (6), with appropriate control law included dynamic inversion and
the dynamic NF learning algorithm, and thus the robot state will track the desired trajectory xd. As
a result, the dynamic inversion (24) will /nally approximate the inverse dynamics of the robot.

3.4. Dynamic NF controller design

The following control law is considered for the robot trajectory tracking:

u = uI − PKx̃; (25)

where uI is de/ned in (24), PK=KC∈Rn×2n, and K∈Rn×n is assumed to be diagonal.
The whole NF adaptive control diagram is shown in Fig. 1, where the dynamic NF system which

acts as a feedforward controller uI , is used to compensate for the robot inverse dynamics de/ned
in (3). In the feedback control loop, there is a proportional-derivative (PD) control up, which is
used to enhance the stability and robustness of the robot control system. Unlike the adaptive control
structure using static NNs [19] with only one loop, the control structure using dynamic NF system
shown in Fig. 1 has two loops, one by the robot control loop, the other by dynamic NF system.
De/ne the state deHection metric of the robot from the dynamic NF system as

Se = Cx̃ (26)

with x̃=x − x̂=(qTe ; q̇
T
e )
T, and C de/ned as before.
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Fig. 1. NF adaptive control structure.

Subtracting (22) from (19) and using (23), we have

G−1S̃e =
m∑
i=1

!i(z(t))(G−1
i − Ĝ

−1
i )ĥ+

m∑
i=1

!i(z(t))((Ai − Âi)x̂ + bi − b̂i)

+
m∑
i=1

!i(z(t))(Vi − PK)x̃

= W̃Y (!(z(t)); x̂; ĥ) +
m∑
i=1

!i(z(t))(Vi − PK)x̃; (27)

where

S̃e = Ṡe + rSe; Vi = G−1
i (C PA+ rC) + Ai; V =

m∑
i=1

!i(z(t))Vi;

W̃ = W − Ŵ ; W = (G−1
1 ; : : : ; G−1

m ; A1; : : : ; Am; b1; : : : ; bm) ∈ Rn×na ;

(28)
Ŵ = (Ĝ

−1
1 ; : : : ; Ĝ

−1
m ; Â1; : : : ; Âm; b̂1; : : : ; b̂m) ∈ Rn×na ;

Y (!(z(t)); x̂; ĥ) = (!(z(t))⊗ x̂T(t); !(z(t))⊗ ĥ
T
; !(z(t)))T

= (y1(k); : : : ; yna(k)); na = (3n+ 1)m:

The following theorem gives stable adaptive control law and learning algorithm for dynamic NF
systems.
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Theorem. Consider the n-link rigid robot manipulator described by the dynamic model given in
(3), by applying the control law (25) with the dynamic NF learning algorithm

˙̂W = 4(SeY T(!(z(t)); x̂; ĥ) + 5(W0 − Ŵ )); (29)

where 4=diag(41; : : : ; 4n)¿0 is a learning rate matrix, 5¿0 and W0 are design parameters. If the
following relation:

Km¿MG + 3
2 Vmax(1 + r−1m ) (30)

holds, where MG= 1
2supq‖Ṁ (q)‖, Vmax=supt¿‖V‖, Km and rm are the minimum eigenvalues of K

and r, respectively, then the tracking error metric of the robot is uniformly ultimately bounded.

Proof. See the appendix.

Remark 2. M (q) only contains trigonometric functions of q, hence the derivative of each element
with respect to q is bounded so that boundedness of MG is guaranteed.

4. Application example

In this section, the above developed control approach is employed in the position control of a two-
link manipulator. The dynamic equation and parameters of a two-link manipulator are the same as
those given in [19]. The desired joint angle trajectory for the robot to follow is

q1d(t) = 0:5(sin t + sin 2t); q2d(t) = 0:5(cos 3t + cos 4t): (31)

And the initial simulation condition for robot motion is chosen as

q1(0) = 1:0; q̇1(0) = −0:5; q2(0) = 0:5; q̇2(0) = −2:0 (32)

where qi; qid (i=1; 2) are the ith robot joint angle and the corresponding desired trajectory, respec-
tively.

4.1. Derivation of the T–S fuzzy model

The dynamic T–S fuzzy model of a robot can be derived using Gustafson–Kessel clustering
approach through I=O data from the robot control process with sampling interval 0:02 s. There are
400 sets of data in all used for fuzzy clustering. It has been shown in the example that the dynamic
NF system with 8 rules is enough to approximate the robot dynamic process. The design parameters
are chosen as w=2; *=9:8. Partial results are presented as follows:
Rule i:
If x is about ceni
then

ẋ = PAx + P̂Aix + P̂Biu+ P̂bi: (33)



F. Sun et al. / Fuzzy Sets and Systems 134 (2003) 117–133 127

The membership function for the ith fuzzy rule can be represented as

$i(x) = EXP((x − ceni)TM−1
i (x − ceni)) (34)

with

Cen =




cen1
cen2
...

cen7
cen8


 =




−0:8347 −0:1304 −0:6528 −0:9633
0:08582 0:1938 −0:1182 0:08137

...
...

...
...

−0:5365 1:114 0:1427 2:882
0:3884 −0:9429 0:4343 0:5851


 ;

M1=diag(18:17 82:87 2:466 139:8), M2=diag(2:472 78:82 1:993 214:5),
M3=diag(35:81 24:20 12:46 261:6), M4=diag(12:62 1:785 8:314 436:3),
M5=diag(7:776 18:50 1:479 161:2), M6=diag(3:389 36:78 1:682 247:9),
M7=diag(1:775 33:65 13:64 342:0), M8=diag(0:6163 1:243 4:572 4:713).

After having determined cluster centers and widths for 8 fuzzy rules using Gustafson–Kessel
clustering approach, parameters Ĝ−1

i ; Âi, and b̂i (i=1; : : : ; 8) in (22) are calculated by global least
square optimization method, which are used to assign the initial values for dynamic NF systems.
The estimated values of Ĝ−1

i ; Âi; b̂i (i=1; : : : ; 8) are omitted here for saving the paper length.

4.2. NF adaptive controller design

In the previous fuzzy modeling of dynamic NF system, constant vectors Pbi (i=1; : : : ; 8) have not
been considered in the identi/cation model for the time being, which will be considered during
on-line adaptive learning for compensating constant disturbances. The basis functions of NF system
can be chosen by (28), there are 56 neurons in all required, which is ¡142 neurons used in the
static NN-based adaptive controller design [20]. The initial weights for the dynamic NF adaptive
controller are chosen as

Ŵ (0) = (Ĝ
−1
1 (0); : : : ; Ĝ

−1
8 (0); Â

−1
1 (0); : : : ; Â

−1
8 (0); b̂

−1
1 (0); : : : ; b̂

−1
8 (0)); (35)

where Ĝ−1
i (0) and Â−1

i (0) (i=1; : : : ; 8) come from the model identi/cation in Section 4.1, b̂i(0)
(i=1; : : : ; 8) are chosen as zero vectors or as random numbers.
The design parameters are chosen as

r = diag(12; 12); C = (r; I); K = diag(100; 80); I = diag(1; 1) (36)

and parameter vector r0=0:12I is chosen to assign the desired dynamics of the dynamic NF system
for good tracking responses of the robot state q in the initial control process. The learning law for
dynamic NF adaptive control is chosen as

41 = 222:5=(‖Y (!(z(t)); x̂; ĥ)‖∞ + 0:5); 42 = 221:3=(‖Y (!(z(t)); x̂; ĥ)‖∞ + 0:5): (37)

Fig. 2(a) and (b) present the angle tracking errors for two joints of the robot during the /rst 10 s
and the last 10 s of operation using dynamic NF controller with payload m2=6:25 kg. To evaluate
the robustness of the dynamic NF controller against constant disturbances and payload variations,
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Fig. 2. Robot angle tracking error responses using dynamic NF control with payload m2 =6:25 kg for q1 (solid) and q2
(dotted): (a) during the /rst 10 s of operation; (b) during last 10 s of operation.
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Fig. 3. Robot angle tracking error responses using dynamic NF control with disturbances for q1 (solid) and q2 (dotted):
(a) during the /rst 10 s of operation; (b) during last 10 s of operation.
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Fig. 4. Robot angle tracking error responses using dynamic NF control with payload m2 =10:25 kg for q1 (solid) and q2
(dotted): (a) during the /rst 10 s of operation; (b) during last 10 s of operation.
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disturbance control torques and payload variation are considered in the robot dynamics for simulation
studies, respectively. Fig. 3(a) and (b) show the angle tracking errors for a robot with disturbance
torques 100 N m, which are added to two joints of the robot since t¿3 s. Fig. 4(a) and (b) present
the angle tracking errors for two joints of a robot, with payload m2=10:25kg instead of m2=6:25kg.
It has been shown in Figs. 3 and 4 evidently that dynamic NF controller has a better robustness
against constant disturbances and payload variations. Besides, the control results shown in Fig. 2(a)
and (b) are superior to these given by the adaptive control approaches of robotic manipulators using
static and dynamic NNs [20, 18].
We have shown in previous simulations that dynamic NF adaptive control has a better tracking

performance than both static and dynamic NN-based adaptive ones in the whole control process
and has robustness against constant disturbances and payload variations. The reason for this is two
folds. One is attributed to the modeling capability of the dynamic NF system, where the good NN
structure and initial weights are determined for the dynamic NF system while the initial weights in
the static and dynamic NN-based controllers are totally unknown. The other is introduction of the
PD type control in the control structure of Fig. 1 for enhancing the stability and robustness of the
dynamic NF control system.

5. Conclusions

A stable NF adaptive control approach integrating the merits of dynamic NN approach and the
modeling power of the fuzzy logic system has been developed for the trajectory tracking of a robotic
manipulator with poorly known dynamics. With the modeling power of fuzzy logic, the structure
of NF system can be determined using I=O data and linguistic information from the robot control
process. In the example, the controller obtained is simpler in structure with only 56 neurons and
shows a better approximation capability than the dynamic NNs with 154 neurons [18] and the static
NNs with 142 neurons [20]. Besides, by appropriately choosing r0 for assigning the desired dynamics
of the NF system, the dynamic performance of robot trajectory tracking is guaranteed in the initial
stage of control process. The control law developed contains the dynamic inversion constructed
by the dynamic NF system, a PD control component that is used to compensate for uncertainty
and improve the dynamic performance of the robot manipulator. Using Lyapunov stability theory,
the complete stability and the tracking error convergence are proven, and the learning algorithm
is obtained thereby. Simulations for the trajectory tracking of a two-link manipulator show the
superiority of the stable dynamic NF adaptive control approach to those using dynamic and static
NNs.
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Appendix A. The Proof of Theorem

Let the Lyapunov function is de/ned by

V = 1
2 S

T
e G

−1Se + 1
2 S

T
0 S0 + qTe Krqe +

1
2 tr(W̃

T
4−1W̃ ): (A.1)

Di2erentiating V0 de/ned in (A.1) with respect to time leads to

V̇ = 1
2 S

T
e Ġ

−1
Se − STe G

−1rSe + STe W̃ Y (!(z(t)); x̂; ĥ) + STe (V − PK)x̃

− ST0 r0S0 + 2q̇
T
e Krqe − tr( ˙̂W

T
4−1W̃ ): (A.2)

Since

STe V x̃ 6 1
2 Vmax(3 + r−1m )‖q̇e‖2 + 1

2 Vmax(1 + 3r
−1
m )‖rqe‖2; (A.3)

− STe PKx̃ + 2q̇Te Krqe 6 −Km(‖q̇e‖2 + ‖rqe‖2): (A.4)

Besides, it is easy to verify from (5) that G−1=M (q). For this, we have

1
2 S

T
e Ġ

−1
Se 6 MG(‖q̇e‖2 + ‖rqe‖2): (A.5)

Substituting (A.3) through (A.5) into (A.2) and using (29) lead to

V̇ 6 −rmMm‖Se‖2 − r0m‖S0‖2 − "‖rqe‖2 − 5 tr((W0 −W )TW̃ ); (A.6)

where "=Km − 3
2 Vmax(1 + r−1m )−MG¿0 with condition given in (30). Since

− 5 tr((W0 −W )TW̃ ) = − 1
2 5‖W̃‖2 − 1

2 5‖W0 − Ŵ‖2 + 1
2 5‖W −W0‖2: (A.7)

Substituting (A.7) into (A.6), we have

V̇ ¡−rmMm‖Se‖2 − r0m‖S0‖2 − "‖rqe‖2 − 1
2 5‖W̃‖2 − 1

2 5‖W0 − Ŵ‖2 + 1
2 5‖W −W0‖2

6− P
Pmax

V + :; (A.8)

where Pmax=max(MM; 1:0; 2KMr−1m ; 4−1m ), P=min(2rmMm; 2r0m; 2"; 5)¿0, := 1
2 5‖W−W0‖2 with MM;

Mm de/ned in Section 2.2 by property 1, KM is the maximum eigenvalue of K , and r0m; 4m de/ned
as the minimum eigenvalues of r0 and 4, respectively.
It is concluded from (A.8) that ‖x̃‖ and ‖W̃‖ will eventually fall into a residual set with the

size O(:), and so will ‖q̇e‖ and ‖qe‖. Moreover, q̂ will converge to the desired state vector qd
exponentially fast as required (See (23)), so ‖S‖ will also eventually fall into a residual set with
the size O(:). By applying De/nition 1 theorem is proved.
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