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Abstract

This paper presents the formulation and application of a strategy for the determination of an optimal trajectory for a multiple

robotic configuration. Genetic Algorithm (GA) and Simulated Annealing (SA) have been used as the optimization techniques and

results obtained from them compared. First, the motivation for multiple robot control and the current state-of-art in the field of

cooperating robots are briefly given. This is followed by a discussion of energy minimization techniques in the context of robotics,

and finally, the principles of using genetic algorithms and simulated annealing as an optimization tool are included. The initial and

final positions of the end effector are specified. Two cases, one of a single manipulator, and the other of two cooperating

manipulators carrying a common payload illustrate the proposed approach. The GA and SA techniques identify the optimal

trajectory based on minimum joint torque requirements. The simulations performed for both the cases show that although both the

methods converge to the global minimum, the SA converges to solution faster than the GA.

r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Multiple cooperating robots can be used to facilitate
various operations undertaken in manufacturing indus-
try. For example, tasks such as assembly of components
and flexible material handling operations can be more
efficiently carried out using two manipulators instead of
one. Moreover, multiple robots make manufacturing
systems more flexible and these systems become capable
of handling more complex operations. However, most of
these operations are repetitive in nature and do not
require much decision making. All of these considera-
tions inspire research in real time control of multiple
cooperating robotic systems. A lot of research has been
carried out in the robotics and manufacturing automa-
tion (RAMA) Laboratory at Duke University for
coordinating position, motion, and grasping force for

multi-manipulator systems acting in synchronization
(Garg, 2000; Garg, 1992; Nagchaudhuri and Garg,
1992). A number of control strategies, such as fuzzy
logic (Prabhu and Garg, 1998; Woodard and Garg,
1999; Prabhu and Garg, 1995) neural networks (Garg
et al., 1999; Prabhu and Garg, 1996; Ananthraman and
Garg, 1993a, b), general redundancy optimization
method (Zhang and Ferch, 1998), and two level
hierarchical fuzzy logic for hyperredundant cooperating
robots (Ivanescu and Bizdoaca, 2000) have been
published in technical literature.
Specifically, Zhang and Ferch (1998) have applied an

approach to online automatic learning of a B-spline
fuzzy controller. The objective was to enable a two-arm
manipulator system to perform complex cooperating
tasks such as jointly carrying a rigid object. This
controller model directly connects the sensor inputs to
the compensation motion. By using the adaptation of
control actions in all possible situations through
practicing of the robots in the real environment,
uncertainties of the robot-object model can be taken
into account. Due to on-line learning approach, the
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compliant motion of the robot system can be adapted to
new situations in a relatively short time. Similarly,
Ivanescu and Bizdoaca (2000) have proposed a two-level
hierarchical fuzzy controller to solve the control
problem for a multi-chain robotic system formed by
tentacle manipulators grasping a common object with
hard point contacts. The control system consists of two
parts: the first component is a conventional controller
which implements a control strategy based on Lyapunov
stability and the second one is an adaptive fuzzy
controller which adjusts the control parameters by the
output of the first level controller.
In a recent paper, Kwon and Lee (1998) have

proposed a new force distribution scheme for multiple
cooperating robots in which duality theory of non-linear
programming (NLP) is combined with the quadratic
programming (QP) approach. The optimal force dis-
tribution of the problem is formulated as a QP problem
with both linear and quadratic constraints, and an
efficient algorithm obtains its solution. The use of
quadratic constraints considerably reduces the number
of constraints, thus enabling the dual method of NLP to
be used in the solution algorithm. Moreover, it can treat
norm constraints without approximation, such as bound
of the norm of the force exerted by each robot. Murphy
et al. (1991) have formulated a problem of a system of
two mobile cooperating robots that form a closed
kinematic chain. The formulation includes the full
dynamic interactions from arms to platforms and from
arm tip to arm tip, and the possible translation and
rotation of the platform. The equations of motion are
shown to be identical in structure to the fixed platform
cooperative manipulator dynamics. The solution to
cooperative motion is able to incorporate any form of
solution to the forward dynamics of a topological tree of
manipulators and a platform.
In the area of path planning, Han et al. (1997) have

presented an intelligent navigation architecture for
micro-robots playing soccer games. In their proposed
navigation system, the central path planner uses a
genetic searching algorithm to generate and modify
consecutive via-points that micro-robot soccer players
must follow to avoid moving obstacles and reach the
goal position. The low-level on-line navigation algo-
rithm is also available for each micro-robot, which
accomplishes dynamic local path planning and tracking
of each path between via-points generated from the
central path planner. To facilitate the path planning
procedure, the position and orientation of each mobile
robot as well as the ball and goal post are detected using
a color vision system in which the dotted scanline
method is developed and applied to the rows and
columns of digitized image plane. It is evident from a
review of current literature that a whole lot of research
effort is underway that deals with the problem of
controlling cooperative robots.

Energy requirement has been an important aspects of
a physical system and its minimization is generally
desirable. A lot of research has been carried out to
search for the trajectory generation strategies based on
the concept of energy minimization. For example,
Hirakawa and Kawamura (1996) have proposed a
method to solve the trajectory generation problem in
redundant degree of freedom manipulators. They have
used a variational approach and the B-Spline curve is
introduced for minimization of the consumed electrical
energy of a robot manipulator system. The application
of this method is oriented to repeated jobs realized by
industrial robot manipulators. Similarly, Delingette et al.
(1992) have presented a method to generate curvature
constrained trajectories for which the curvature profile is
a polynomial function of arc length. An algorithm based
on the deformation of a curve by energy minimization
allows solving general geometric constraints, which had
not been possible by previous methods. Furthermore,
they were able to take into account the limitation of
radius of curvature of the robot by controlling the
extrema of curvature along the path.
The subject of energy minimization continues to be of

interest in the robotics and automated manufacturing
context. For example, in a related research effort, Garg
and Ruengcharungpong (1992) have proposed a strategy
for force balance and energy optimization for cooperat-
ing manipulators. For simulation, two SCARA robots
forming a closed kinematic chain were controlled using
their individual controllers. A position control strategy
was used for each robot, and the corresponding end
effector forces were calculated. These forces were
equalized and corresponding power used was computed.
They employed linear programming technique to
calculate external forces such that the power used in
the direction of motion was minimized.
In path planning problems, the number of feasible

paths between the initial position and final position of a
robot is often very large, and the goal is not necessarily
to determine the best solution, but to obtain an
acceptable one according to certain requirements and
certain constraints. Various search methods have been
developed (e.g., calculus-based methods, enumerative
schemes, random search algorithms, etc.) for the robot
path-planning problem. Enumerative schemes are not
effective when the search space is too large to explore all
possible paths. Random search algorithms are probabil-
istically complete, but may take a long time to find a
solution. In their study, Pin and Culioli (1992) have
applied a projected sub gradient algorithm to solve the
minimax problem for joint torque distribution optimi-
zation, but the run time was long and the result obtained
was a local minimum. Chen and Zalzala (1997) have
applied Genetic Algorithmic approach to multi-criteria
motion planning of mobile manipulator systems. Mini-
mum distance of travel and path safety were considered
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as the two criteria for the mobile robot path planning.
The emphasis of the study was placed on using genetic
algorithms to search for global optimal solutions and
solve the minimax problem for manipulator torque
distribution. Various simulation results from two
examples show that the proposed genetic algorithm
approach performs better than the conventional search
methods. Similarly, Sexton and Gupta (2000) have
carried out a comparative evaluation of genetic algo-
rithm and back-propagation for training neural net-
works (NNs) for five chaotic time series. Their results
show that the Genetic Algorithms are superior to Back-
Propagation in effectiveness, ease-of-use and efficiency
for training NNs. For every problem considered, the
Genetic Algorithm approach was found to provide
statistically superior solutions in less CPU time. Painton
and Campbell (1995) have used Genetic Algorithmic
optimization techniques to design an optimization
model that identifies the types of component improve-
ments and the level of effort spent on those improve-
ments to maximize one or more performance measures
(e.g., system reliability or availability) subject to
constraints (e.g., cost) in the presence of uncertainty
about component failure rates. Results and comparison
with enumeration of the configuration space show that
genetic algorithms perform very favorably in the face of
noise in the output and they are able to find the
optimum over complicated, high dimensional, nonlinear
space in a tiny fraction of the time required for
enumeration.
Genetic Algorithm (GA) based search and optimiza-

tion techniques have recently found increasing use in
machine learning, robot motion planning, scheduling,
pattern recognition, image sensing and many other
engineering applications. In principle, GAs are search
algorithms based on mechanics of natural selection and

natural genetics. They combine survival of the fittest
among the string structures with randomized yet
structured information exchange to form a search
algorithm with innovative flair of natural evolution.
A GA starts with a random creation of a population

of strings and thereafter generates successive popula-
tions of strings that improve over time (Goldberg, 1989).
The processes involved in the generation of new
populations mainly consist of the following operations
that are illustrated in Fig. 1.

1. Reproduction: Reproduction is a process in which
individual strings are copied according to their
objective function values, ‘f ’ (also called fitness
function), which measures profit, utility or goodness
that needs to be maximized. Strings with a higher
fitness value have a probability of contributing one or
more offspring in the next generation. The reproduc-
tion operator may be implemented in an algorithmic
form in a number of ways such as Roulette wheel
selection, rank selection, or steady state selection.
Once a string has been selected for reproduction, an
exact replica of the string is made. This string is then
entered into the mating pool, a tentative new
population for further genetic operator action.

2. Crossover: After reproduction, simple crossover may
proceed in two steps. First, members of newly
reproduced strings in the mating pool are mated at
random. Second, each pair of strings undergoes
crossing over as follows: an integer position ‘k’ along
the string is selected uniformly at random between 1
and string length l minus one i.e., ð1; l � 1Þ: Two new
strings are created by swapping all the characters
between positions ðk þ 1Þ and l inclusively.

3. Mutation: Mutation is a random alteration of the
value of a string position. In binary coding, this

1 0 1 1 0 1 1 0 1 1

1 0 1 1 0 1 1 0 1 1

1 0 0 1 1 0 1 1 1 0

1 0 1 1 0 1 1 0 1 1

1 0 1 1 1 1 1 0 1 1

1 0 1 1 0 1 1 1 1 0

1 0 0 1 1 0 1 0 1 1

Mutation

Crossover

Reproduction

Fig. 1. Schematic representation of basic genetic algorithm operations.
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means changing a 1 to 0 and vice versa. In GA, its
probability of occurrence is generally kept small, as a
higher occurrence rate would lead to a loss of
important data. GA, with 100 % mutation rate
becomes random search in the solution space.

GAs have proven their robustness and usefulness over
other search techniques because of their unique proce-
dures that differ from other normal search and
optimization techniques in four distinct ways:

1. GAs work with coding of a parameter set, not the
parameters themselves.

2. GAs search from a population of points, not a single
point.

3. GAs use payoff (objective function) information, not
derivative or other auxiliary knowledge.

4. GAs use probabilistic transition rules, not determi-
nistic rules.

In the context of determining a suitable manipulator
trajectory, a number of methods have been proposed
and researched in recent years. For example, Monteiro
and Madrid (1999) have used GA to plan the stages of
the trajectory of a robot arm called Jeca III. They have
proposed the use of GA to plan a trajectory with
obstacle avoidance and implement joint space using
classical GA. This is achieved in two stages: initial
positioning, which locates the end effector of robot arm
in first point of trajectory, and incremental positioning
which moves the end effector to the next point of
trajectory. Pires and Machado (1999) have used GA to
generate collision free trajectories for robotic manip-
ulators with the objective to minimize the path length
and ripple in time evolution of robot positions and
velocities. They have used direct kinematics for this
purpose and have presented results for several redun-
dant and non-redundant robot manipulators.
Similarly, Watanabe et al. (1999) have described a

method for the path planning of an omni-directional
mobile manipulator by applying an evolutionary strat-
egy. Initial and final orientations and arrival time are
specified in advance. The approach automatically selects
points in a wide range of data points, minimizing or
maximizing the total cost function, which consists of
several sub-cost functions such as motion smoothness,
movable range of joint, singular orientation etc. The
points are then used to form a trajectory by fitting in a
B-spline curve. In their recent paper, Choi et al. (1999)
have used GA for trajectory optimization and applied it
to biped robots. They have proposed a method to find
optimal via-points using GA that minimizes the sum of
deviation of velocities and acceleration as well as jerk to
obtain continuity on the entire trajectory interval
and energy distribution. The continuous velocity and
acceleration at the via points ensure a smooth biped
walking.

Makino et al. (1999) have proposed the development
of a motion planning system which yields an optimal
work pass for an autonomous agricultural vehicle in a
farm land. Their system consists of two parts: global
path planning and local motion planning. The global
path planning component works to acquire an optimal
work path for the whole field. In this case, the optimal
work path is the lowest traveling cost from a start point
to a goal point. The local motion planning component
acquires the optimal path and plans an optimal control
policy in a headland. These components are implemen-
ted with simulated annealing, TABU search, GA and
reinforcement learning algorithm.
This paper investigates the use of simulated annealing

(SA) also applied for path planning problem. Simulated
annealing works on a principle analogous to the
formation of crystals in cooling solids. A solid material
heated beyond certain temperature will become liquid
and when cooled back slowly, it will form crystals in a
minimal energy state. Similar to GA, the algorithm is
based on formulation of a fitness or cost function that
represents the relative merit of a point in search space.
The search algorithm operates as follows. The algorithm
starts with a point in solution space. From the
algorithm’s current position, a neighboring point is
chosen at random. The difference in the fitness function
value between the new point and the current point, DC;
is calculated. The difference is used together with the
current system temperature, t; to calculate the prob-
ability of the new position being accepted. The prob-
ability is given by the distribution e�DC=t: The process
continues with the same temperature t either for given
number of iterations or until a given number of
positions have been occupied, at which time the value
of t is decreased. The temperature decreases until no
transitions are possible, so the system remains frozen in
one position. This freezing occurs only when DC is
positive for all neighboring points, which means that the
position must be a local minimum or may be a global
minimum. The advantages of simulated annealing
include:

(a) SA can process cost functions possessing quite
arbitrary degrees of nonlinearities, discontinuities,
and stochasticity.

(b) SA can process quite arbitrary boundary conditions
and constraints imposed on these cost functions.

(c) SA be implemented quite easily with the degree of
coding quite minimal relative to other nonlinear
optimization algorithms

(d) SA can statistically guarantee finding an optimal
solution.

However, SA has some drawbacks too. For example:

(a) SA can be quite time-consuming to find an optimal
fit.
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(b) SA can be difficult to fine tune to specific problems,
relative to some other fitting techniques.

(c) SA can suffer from ‘‘over-hype’’ and faddish
misuse, leading to misinterpretation of results.

The research results presented in this paper make use of
adaptive simulated annealing (ASA), an algorithm
presented in Ingber (1996), which overcomes many of
the above shortcomings. ASA is a global optimization
algorithm that relies on randomly importance-sampling
the parameter space, i.e., in contrast to utilizing
deterministic approaches. This algorithm fits empirical
data to a theoretical cost function over a D-dimensional
parameter space, adapting for varying sensitivities of
parameters during the fit.
Simulated Annealing has been used extensively in

non-linear optimization problems. For example Bow-
man and Ingber (1997) have presented a set of tools that
can be applied as such supplemental indicators, based
on stochastic nonlinear multivariate modeling used to
benchmark Janus simulation to exercise data from the
U.S. Army National Training Center (NTC). As a
prototype study, they used ASA to explicitly fit Janus
data, deriving coefficients of relative measures of
effectiveness, and developing a sound intuitive graphical
decision aid, canonical momentum indicators (CMI),
faithful to the sophisticated algebraic model.
Moreover, SA has been used in field of finance,

neuroscience, robotics and lots of other fields. Ingber and
Mondescu (2001), in their paper, have used ASA code for
designing optimum trading model. They have described
an end-to-end real-time S&P futures trading system. They
developed inner-shell stochastic nonlinear dynamic mod-
els, and derived CMI from a fitted Lagrangian used by
outer-shell trading models dependent on these indicators.
Recursive and adaptive optimization using ASA has been
used for fitting parameters shared across these shells of
dynamic and trading models.
In the field of robotics as well, simulated annealing

has been extensively used for optimization problems. In
motion planning of robots, determining minimum
distance between two bodies is one of the most
frequently encountered problem. Some earlier ap-
proaches propose to partition the concave object into
convex sub objects and then solve the convex problem
between all possible sub-objects combination. Carretero
et al. (2001) in their paper, have proposed an optimiza-
tion approach without portioning the concave object
into several convex sub-objects. They have used
simulated annealing to solve the concave problem. They
have proposed to replace the objects’ geometry by a set
of points on the surface of the body. This reduces the
problem to finding the combination of two points for
which the distance will be minimum.
For motion planning and obstacle avoidance for

mobile robots, artificial potential field methods provide

simple and effective motion planners for practical
purpose. However, formation of local minima, which
can trap a robot before reaching its goal, is a major
problem. Park et al. (2001) have presented and applied
the mobile robot path planning technique which
integrate the artificial potential field approach with
simulated annealing.
This research paper proposes a path planning method

that searches the manipulator configuration for an
optimum path based on performance index value
defined. An optimum path is the one that requires the
minimum amount of torques and hence leads to low
energy consumption. The research makes use of both
GA and SA algorithms and makes a comparison of
performances of these two algorithms for this optimiza-
tion problem.

2. Problem formulation

Given the initial and final positions of a robot end
effector, the problem of finding an optimal path to be
followed is considered in this research paper. The
problem consists of locating a specific path that requires
the least amount of torque amongst several possible
paths. It is evident that the end effector, in moving
between any two specified end points, can follow a
variety of paths. All such paths require different
amounts of torque depending upon the distance
covered, the velocity and the acceleration achieved,
and the payload carried.

3. Approach

Each joint trajectory is assumed to be a polynomial of
4th degree in time, t: If yðtÞ is the angle between a link
and the x-axis or made with the other link, a fourth-
order polynomial can be expressed in the form:

yðtÞ ¼ at4 þ bt3 þ ct2 þ dt þ e; ð1Þ

where a; b; c; d and e are parameters to be determined
based on end conditions (Yoshikawa, 1990). Angle ‘y’ is
considered to be positive in counterclockwise direction.
The problem of a two-link manipulator system has

been chosen for this study because of its simplicity and
for the ease of demonstrating the validity of the
approach proposed. However, the methodology is
equally applicable to more complex manipulators
having a larger number of joints. The initial and final
boundary conditions of angular displacement and
angular velocity are applied to two equations for each
link. Applying these boundary conditions gives relation-
ship between the four coefficients of the polynomial in
terms of the fifth. Optimal value of this fifth coefficient
(a1 and a2 for link 1 and link 2) is determined.
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In this paper, the GA and ASA technique have been
used to solve the above problem of finding the two
variables left to be determined. Flowchart in Fig. 2
shows the process that a GA takes to find an optimum
solution.

4. Examples

Two different yet related situations have been
considered below.

Case I: A simple two-link revolute joint manipulator
robot (see Fig. 3).
The following relationship has been formulated to

specify the corresponding fitness function:

Performance Index ðPIÞ ¼
X ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t21 þ t22

q����
����; ð2Þ

where t1 and t2 are the actuator torques applied at joints
1 and 2, respectively.

Case II: Two cooperating robots carrying a payload
of mass ‘M’ (see Fig. 4).
The fitness function in this case is specified by

Performance Index ðPIÞ

¼
X ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ft211 þ t212 þ t221 þ t222g
q����

����; ð3Þ

where t11 and t21 are actuator torques applied at joints 1
and 2 of first robot, respectively; and t12 and t22 are

actuator torques applied at joints 1 and 2 of second
robot, respectively.
The summation sign in Eqs. (2) and (3) denotes that

the quantities are being summed at particular interval of
time for the total duration of travel.
Case II has an added complexity of the estimation of

internal forces that come into play because of the
maneuvering of a common object by two robots. This
problem of estimating internal forces for optimum
torque requirement was also solved using GA and
ASA. The internal forces that come into play are planar
forces. That means there are two components of forces
acting on each robot. Thus, four equations are needed to
calculate four components of the forces acting on both
the robots. Motion of object in X and Y direction gives
two equations. The following two relationships are
assumed, with parameters n1 and n2 to be optimized by
GA and ASA.

Fx1 ¼ n1Fx2; ð4Þ

Fy1 ¼ n2Fy2; ð5Þ

where Fx1 and Fx2 are forces acting in the x-direction on
robot 1 and 2, respectively, and Fy1;Fy2 are forces
acting in the y-direction on robot 1 and 2, respectively.
The end effector of the second robot simply follows

the path described by the end effector of the first robot.
The path of the first robot is determined by generating
the parameters using GA and ASA. That leaves the joint
angles of the second robot to be determined in the same
coordinate frame. This problem was solved by applying
the Newton–Raphson method. The joint angles for the
second robot were determined using the position of end
effector known from the first robot.
The computed torque t applied to the joints (Craig,

1989) is given by the following equation:

t ¼ MðYÞ .Yþ V ðY; ’YÞ þ GðYÞ; ð6Þ

where n is the number of joints, MðYÞ is ðn � nÞ mass
matrix, V ðY; ’YÞ is the ðn � 1Þ vector of centrifugal and

YES

START

CREATE RANDOM
POPULATION OF
UNKNOWN VARIABLE

HAS THE
BEST GENE
CONDITION
BEEN MET?

APPLY SELECTION, CROSSOVER, AND
MUTATION TO EACH GENE OF
POPULATION

GENERATION = GENERATION + 1

STOP

NO

Fig. 2. Flow chart representing the optimization process using the

genetic algorithm strategy.

θ 1

θ 2

Fig. 3. Schematic diagram of a two link manipulator.
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Coriolis terms, and GðYÞ is the ðn � 1Þ vector of gravity
terms.

5. Simulation

The simulator consists of:

1. The GA code (1998) (which initializes population of
two parameters in the first case and three parameters
in the second case) uses its operators to find optimum
value of these coefficients based on the expression for
performance index.

2. An ASA code which finds the optimum parameter
value with respect to a PI based on ASA Code
(Ingber, 1996).

3. Kinematics and dynamics solver which determines
angular displacement, angular velocity, angular
acceleration and torque.

4. Plotter which plots graphs illustrating various prop-
erties.

In both of the cases considered in this paper, a
population of 100 elements (main population), ran-
domly created, is used. Each of these elements represents
a trajectory.

6. Simulation results

The GA and ASA techniques use their operators and
functions to find the value of a1 and a2 for which the
performance index is minimum. These values of a1 and
a2 determine the trajectory followed by the end effector.
The trajectory thus obtained has minimum torque
requirement value and thus low energy requirement.
For simulation, following parameters have been used:

Length of Link1 (Robot1): 0:2 m
Length of Link2 (Robot1): 0:4 m
Length of Link1 (Robot2): 0:8 m
Length of Link2 (Robot2): 0:9 m
Mass of Link1 (Robot1): 1 kg
Mass of Link2 (Robot1): 2 kg

Mass of Link1 (Robot2): 4 kg
Mass of Link2 (Robot2): 4:5 kg
Mass of payload: 2 kg
Distance between the base points of two robots:1m

Fig. 5. Joint angles vs. time for Case I.

Fig. 6. Joint torques for both joints vs. time for Case I.

Fig. 4. Schematic diagram of two link cooperating robots carrying a payload of mass ‘M’.
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The results obtained from the simulation for both cases
considered are shown in Figs. 5–11 and are discussed
below:

Case I: Initial and final joint angles of the robotic
manipulator have been specified as

y1ðinitialÞ ¼ 0 rad; y1ðfinalÞ ¼ 1 rad;

y2ðinitialÞ ¼ 0 rad; y2ðfinalÞ ¼ 1 rad:

The arrival time has been specified to be equal to 2 s:
Fig. 5 shows the variation of y1 (Theta 1) and y2

(Theta 2) (angles as shown in Fig. 3) with time. The plot
shows that both y1 and y2 start from initial position at
t ¼ 0 s; and reach the final position at t ¼ 2 s: Fig. 6
shows the variation of torques applied to first (torque 1)
and second joint (torque 2) vs. time. It can be seen from
the plot of torques that the initial torque requirement is
high and it decreases with time. It becomes negative

Fig. 7. Successive temporal positions of the manipulator links at 0:05 s
interval for Case I.

Fig. 8. Average value of performance index (PI), in a generation vs.

number of generations for Case I obtained using GA.

Fig. 9. Percentage error ððMinimum PI� BestÞ � 100=Best PIÞ vs.

number of function calls for Case I.

Fig. 10. Minimum PI value reached vs. time required to reach that

point for Case I.
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Fig. 11. Joint angles vs. time for Case II.
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when the joint actuator attempts to rotate the first arm
in the opposite direction.
Fig. 7 shows the temporal position of the manipulator

links at a time interval of 0:05 s: Fig. 8 shows the
average value of performance index (GA optimization)
in a particular generation versus number of generation.
A continuous decrease in average value of performance
index is also indicative of a smooth convergence to a
solution. Fig. 9 shows the percentage error, which is the
error of minimum PI value at certain iteration and the
optimum or Best PI value, plotted against the number of
function calls for both of the optimization techniques. It
can be seen that the rate of convergence of ASA is very
fast as compared GA. ASA takes approximately 300
function calls to reach appreciably close to the optimum
solution, while GA takes approximately 1300 function
calls to reach that value. The optimum value of PI or the
Best PI is 175.302. Fig. 10 is a similar plot in which the
minimum PI value is plotted against time taken to reach
that point in search space by respective algorithms. ASA
takes approximately 7 s to converge to the optimum
solution while GA takes approximately 19 s to con-
verge.
Following are the values of parameter that have been

obtained:

a1 ¼ 0:5512; b1 ¼ �2:4548; c1 ¼ 2:9548; d1 ¼ 0; e1 ¼ 0;

a2 ¼ 0; b2 ¼ �0:2500; c2 ¼ 0:7500; d2 ¼ 0; e2 ¼ 0;

Case II: This case has the same initial conditions as the
first case. The end effector of the second robot simply
follows the path taken by end effector of first robot in a
master-slave mode.
Fig. 11 shows variation of y11; y21; y12 and y22

(angles as shown in Fig. 4). The simulation yields a zero
value for both a1 and a2: The curves for y11 and y21
versus time are analytical functions given by Eq. (1),

and are coincident. Fig. 12 shows the variation of
torque requirement with time. Again, it can be seen
that the torque requirement is initially high and it
becomes negative in order to slow down the motion
of links.
Similar to Case I, the average value of performance

index (GA optimization) versus number of generations
lapsed also decreased and stabilized showing conver-
gence of algorithm to a solution, which is evident in
Fig. 13. Fig. 14 shows percentage error obtained by both
GA and SA algorithms for Case II plotted against the
number of function calls. In this case, the minimum
value of PI is 812.7050. This plot also shows that ASA
converges to optimum solution much faster than a GA.
Fig. 15 shows minimum PI value plotted against time
taken to reach that value for both algorithms. Finally,
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Fig. 12. Joint torques vs. time for Case II.

Fig. 13. Average value of PI, Best PI, in a Generation vs. number of

generations for Case II.

Fig. 14. Percentage error ððMinimum PI� BestÞ � 100=Best PIÞ vs.

number of function calls for Case II.
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Fig. 16 shows the temporal position of the manipulator
links at a time interval of 0:1 s:
Following are the values of parameter that have been

obtained for Case II:

a1 ¼ 0; b1 ¼ �0:2500; c1 ¼ 0:7500; d1 ¼ 0; e1 ¼ 0;

a2 ¼ 0; b2 ¼ �0:2500; c2 ¼ 0:7500; d2 ¼ 0; e2 ¼ 0

and

n1 ¼ 0:500; n2 ¼ 0:500:

7. Conclusions

In this paper, two optimization schemes, ASA and
GA were used to find an optimal trajectory for robotic

applications. The optimum trajectory thus obtained had
minimum torque requirements. The case of a two-link
robot and two cooperating robots were considered.
Initial and final position and arrival time were specified.
The simulation results reported in the paper demon-
strate the superior nature of ASA as compared to GA
for the problem considered. Both the algorithms reached
to same solution which confirms that the solution found
was a global minimum.
Both ASA and GA are powerful search and

optimization technique. Genetic Algorithms are math-
ematically less complex, and relatively simple and easy
to code. The above application, however shows faster
convergence rate of ASA as compared to GA.
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