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Abstract

In the early days of nonlinear control theory most of the stability, optimality and
uncertainty concepts were descriptive rather than constructive. This survey de-
scribes their ‘activation’ into design tools and constructive procedures. Structural
properties of nonlinear systems, such as relative degree and zero dynamics, are con-
nected to passivity, while dissipativity, as a finite L2-gain property, also appears
in the disturbance attenuation problem, a nonlinear counterpart of robust linear
control. Passivation-based designs exploit the connections between passivity and
inverse optimality, and between Lyapunov functions and optimal value functions.
Recursive design procedures, such as backstepping and forwarding, achieve certain
optimal properties for important classes of nonlinear systems. The survey concludes
with four representative applications. The selection of the topics and their inter-
pretations are greatly influenced by the experience and personal views of the senior
author.
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1 INTRODUCTION

Nonlinear feedback control has been the topic of hundreds of publications,
numerous monographs and several comprehensive textbooks, such as Khalil
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(1996b), Vidyasagar (1993), Sastry (1999). In reviewing this wealth of infor-
mation severe and unfair omissions are inevitable. This survey will follow a
personal path and discuss some developments in which the first author was a
participant or, at least, a curious bystander. It begins with an era that was
formative for most of stability, optimality and uncertainty concepts. These
concepts were more descriptive than constructive: they were used to describe
system properties rather than to design a system which will possess these
properties.

The main part of the survey describes, in broad brush strokes, the ongoing
‘activation process’, through which some of the earlier descriptive concepts
are being converted into design tools within constructive procedures applica-
ble to common classes of nonlinear systems. This process is a confluence of
several research streams. Differential-geometric concepts describe structural
properties of nonlinear systems, such as relative degree and zero dynamics.
These properties suggest a connection with passivity, while dissipativity, as a
finite L2-gain property also appears in the disturbance attenuation problem,
treated in the dynamic game framework. This is a nonlinear counterpart of
robust linear control, which itself is closely related to dissipativity through
the fundamental lemmas on passivity and boundedness. Passivity is a key
concept in the inverse problem of optimal control, which reveals a connection
between Lyapunov functions and optimal value functions as solutions of the
Hamilton-Jacobi equation.

2 DESCRIPTIVE CONCEPTS

In the 1940’s-50’s, control theory in the East was influenced by mechanics,
while in the West it emerged from the Nyquist-Bode feedback theory for active
filters. Initially, these two cultures spoke different languages: the state space
language in the East, and the input-output language in the West. The First
IFAC Congress in Moscow, 1960, brought the two cultures together to create
today’s ‘bilingual’ control theory.

2.1 Lyapunov Stability

Stability concepts formulated by Lyapunov at the end of the last century
were advanced by Malkin (1952), Chetaev (1955), Zubov (1957), Krasovskii
(1959), and surveyed by Kalman and Bertram (1960), LaSalle and Lefschetz
(1961), Lefschetz (1965), and Hahn (1967). These advances included vari-
ous converse and invariance theorems by Massera (1956), Kurzweil (1956),
Krasovskii (1959), Yoshizawa (1966), and LaSalle (1968), which are frequently
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used today.

The effects of persistent disturbances were analyzed by Malkin (1952), Krasovskii
(1959), and Hahn (1967), who used the terms practical stability or total sta-
bility to describe boundedness under small perturbations. Systems in which
switching controls (variable structure systems) eliminate the effects of distur-
bances by introducing sliding modes, were investigated by Filippov (1964),
Barbashin (1967), Emelyanov (1967), Filippov (1988), and Utkin (1992). Vec-
tor Lyapunov functions introduced by Bellman and Matrosov were applied to
large scale systems by Michel and Miller (1977), and Šiljak (1978).

2.2 Absolute Stability and the PR Lemma

For a long time a serious drawback of Lyapunov theory was the lack of pro-
cedures for construction of Lyapunov functions. Among the early attempts
to remove this drawback, the absolute stability approach of Lurie (1951), as
presented in Aizerman and Gantmacher (1964), remained highly influential.
For systems consisting of a linear block in feedback with a static nonlinear-
ity, Lurie and coworkers derived algebraic equations for Lyapunov functions
made of a quadratic form and the integral of the nonlinearity. The first chal-
lenge posed by the absolute stability problem was to characterize those linear
blocks for which such quadratic-plus-integral functions exist, given that the
nonlinearity belongs to a known sector. The second challenge was to provide
a procedure for solving the algebraic equations.

In response to these challenges, many blind alleys were explored for a decade.
Then suddenly, the absolute stability problem was solved with a frequency
domain criterion by Popov (1960, 1962), which was an instant success. Its
state space form was soon established in a lemma by Yakubovich (1962) and
Kalman (1963). From today’s standpoint, the fundamental contribution of
Popov’s criterion is the introduction of the concept of passivity (positive re-
alness) in feedback control. The crucial positive real (PR) property was made
explicit by Popov (1963) and, independently, by Brockett (1964). The lemma
of Yakubovich and Kalman was subsequently named the Positive Real Lemma.
For a minimal state space realization (A,B,C) of the transfer function H(s),
the PR Lemma shows that ReH(jω) ≥ 0 is equivalent to the existence of a
P = P T > 0 such that

ATP + PA ≤ 0 and BTP = C . (1)

Thus, H(s) being passive means that P satisfies not only the Lyapunov in-
equality, but also an input-output constraint which restricts the relative degree
of H(s) to be zero or one, and its zeros to be stable (minimum phase). Matrix
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P defines the quadratic form in the quadratic-plus-integral Lyapunov function
and, hence, any procedure that solves (1) can be used to construct this func-
tion. Extensions and interpretations of the PR Lemma were given by Anderson
(1967), Anderson and Vongpanitlerd (1973), Narendra and Taylor (1973), and
more recently, by Tao and Ioannou (1988), Wen (1988), Lozano-Leal and Joshi
(1990), Ioannou and Sun (1996), Rantzer (1996), and Xiao and Hill (1998).

Popov’s work also led to several practically appealing circle criteria by Naren-
dra and Goldwyn (1964), Sandberg (1964a), Zames (1964, 1966), Naumov and
Tsypkin (1965), Yakubovich (1965), Brockett and J.L.Willems (1965), Naren-
dra and Neuman (1966), Cho and Narendra (1968), Zames and Falb (1968),
and others, insightfully surveyed by Brockett (1966), and treated in detail in
the book by Narendra and Taylor (1973). Among these results, particularly
important are the multiplier methods, which paved the road for development
of modern robust control with structured uncertainty. A recent unified treat-
ment with further advances are presented by Megretski and Rantzer (1997).

Tsypkin (1962, 1964, 1963, 1965) was among the first to recognize the fun-
damental importance of Popov’s work. He formulated two absolute stability
criteria for discrete-time systems. Further results in this direction were ob-
tained by Jury and Lee (1964) and, more recently, by Kapila and Haddad
(1996), and Park and Kim (1998). The discrete-time analog of the PR Lemma
was derived by Kalman and Szegö (1963), Szegö (1963), and Hitz and Ander-
son (1969).

2.3 Passivity and Small-Gain Theorems

Following different paths, Popov (1963) and Zames (1966) formulated the
fundamental and far-reaching passivity theorem stating that the feedback in-
terconnection of two nonlinear passive blocks H1 and H2 is passive (see Figure
1). Sandberg (1964b) and Zames (1966) also formulated a small-gain theorem
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Fig. 1. Passivity and small-gain.

for closed-loop stability when the operator gain of H1 connected with H2 is
less than one. Zames saw these small-gain and passivity theorems as nonlin-
ear generalizations of the linear gain and phase results in the Nyquist-Bode
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theory. His words are as enlightening today as they were then:

“The classical definitions of gain and phase shift, in terms of frequency re-
sponse, have no strict meaning in nonlinear or time-varying systems. How-
ever, stability does seem to depend on certain measures of signal amplification
and signal shift. Thus the norm ratio |Hx|/|x| plays a role similar to the role
of gain. Furthermore, the inner product (x,Hx), a measure of input-output
cross-correlation, is closely related to the notion of phase shift. For example,
for linear time-invariant operators the condition of positivity, (x,Hx) ≥ 0,
is equivalent to the phase condition, |Arg{H(jω)}| ≤ 90◦. Theorem 1 can be
viewed as a generalization to nonlinear time-varying systems of the rule that,
‘if the open-loop gain is less than one, then the closed-loop is stable.’ Theorem
3 can be viewed as the generalization of ‘if the open-loop absolute phase shift
is less than 180◦ then the closed loop is stable.’ ”

Until the end of the 1980’s, the passivity theorem was used primarily in adap-
tive control. The Sandberg-Zames small-gain theorem, refined by Desoer and
Vidyasagar (1975), found a wide variety of applications, including robust lin-
ear control with bounded norm uncertainty. A nonlinear sector formulation
and a unified treatment of small-gain and passivity theorems were pursued by
Safonov (1980), Hill and Moylan (1980b, 1983), and Teel et al. (1996).

2.4 Lyapunov Functions and Dissipativity

The PR Lemma connected passivity with the quadratic-plus-integral Lya-
punov functions for the Lurie class of systems. For more general nonlinear
systems, such a connection was made by Willems (1972) with the theory of
dissipative systems, extended by Hill and Moylan (1977, 1980a,b). For a system
H with state x, input u and output y, Willems introduced a storage function
S(x) ≥ 0, S(0) = 0, and a supply rate w(u, y) and defined H as dissipative
if Ṡ(x(t)) ≤ w(u(t), y(t)). 1 Passivity is the special case when w = uTy. An
analogy of storage S is the system energy, and the supply rate w is analogous
to the power delivered to the system by the external sources. Dissipativity
with the supply rate

w(u, y) = uTy − ρyTy − νuTu , (2)

1 The integral form of this definition does not require S to be differentiable, only
w to be integrable. Henceforth, the important issue of differentiability will not be
discussed. The lack of differentiability requires more general solution concepts for
various PDE’s in robust nonlinear control. Best known among them is the viscosity
solution by Crandall et al. (1984).
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can be used to quantify the excess or shortage of passivity via ρ and ν. In a
feedback loop, a positive or negative ‘amount’ of passivity can be reallocated
from the feedforward to the feedback path, or vice-versa, using loop transfor-
mations, already suggested by Popov and Zames. Moylan (1974), and Hill and
Moylan (1976) extended the PR Lemma by showing that the nonlinear system

ẋ= f(x) + g(x)u (3)

y= h(x) + j(x)u , x ∈ IRn , u, y ∈ IRm ,

is dissipative with the supply rate (2) if and only if there exist functions
S(x) ≥ 0, q(x) and W (x) such that

LfS(x) =−1

2
qT (x)q(x) − ρhT (x)h(x)

LgS(x) =hT (x) − 2ρhT (x)j(x) − qT (x)W (x) (4)

W T (x)W (x) =−2νI + j(x) + jT (x) − 2ρjT (x)j(x) ,

where LfS(x) := ∂S
∂x
f(x) and LgS(x) := ∂S

∂x
g(x). This is the nonlinear analog

of a PR Lemma more general than (1). In the special case of passivity we have
ρ = 0 and ν = 0. If the throughput is absent, that is j(x) = 0, condition (4)
reduces to

LfS ≤ 0 , (LgS)T = h(x) , (5)

which is the exact analog of (1). If S(x) is positive definite, it can be taken as
a Lyapunov function which connects dissipativity and passivity with stability
properties of the system (3). A closely related result, Bounded Real Lemma,
has also been extended to nonlinear systems by Hill and Moylan (1976). It
played an important part in the development of nonlinear H∞ control.

2.5 Optimal and Inverse Optimal Control

To improve performance, we often try to find a feedback control u(x) that
stabilizes the system (3) while minimizing the cost

J =

∞∫
0

(l(x) + uTR(x)u)dt , (6)

with l(x) ≥ 0 and R(x) > 0 for all x. A glimpse into the 1950-1960 efforts
to solve such optimal control problems can be gained from the textbooks by
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Athans and Falb (1965), Lee and Markus (1967) and Anderson and Moore
(1971). If V (x) ≥ 0 satisfies the Hamilton-Jacobi-Bellman (HJB) equation

LfV (x) − 1

4
LgV (x)R−1(x)(LgV (x))T + l(x) = 0 , V (0) = 0 , (7)

then the optimal feedback law is

u = −1

2
R−1(x)(LgV (x))T , (8)

and V (x) is its value function, that is, the minimum value of J for the initial
state x. Under a detectability condition with l(x) as the system output, the
optimal control (8) is stabilizing. Furthermore, if the value function V (x) is
positive definite, it can be used as a Lyapunov function, thus establishing
a connection between stability and optimality, as discussed in the books by
Sepulchre et al. (1997) and Sontag (1998b).

In the inverse optimal control problem, a Lyapunov function V (x) is given and
the task is to determine whether a control law such as (8) is optimal for a cost
in the form (6). The control law u = −(LgV (x))T , referred to as LgV -control,
was studied by Zubov (1966), A. Krasovsky (1971), Jacobson (1977), Jurdjević
and Quinn (1978), and other authors.

A connection between optimality and passivity for a linear system with a
quadratic cost (the LQR problem) was established by Kalman (1964) who
analyzed the inverse LQR problem. For the nonlinear system (3) and the cost
(6) with R(x) = I, the passivity-optimality connection, made by Moylan and
Anderson (1973), is that a control law u = −µ(x) is optimal if and only if
the system ẋ = f(x) + g(x)u with the input u and the output y = µ(x) is
dissipative with the rate w(u, y) ≤ uTy + 1

2
yTy. This means that the system

is rendered passive not only with the unity feedback u = −y, but also with
u = −ky where k ∈ [1

2
,∞), which is its gain margin. In this sense optimality

enhances not only performance, but also robustness. Generalizations of stabil-
ity margins were made by Anderson and Moore (1971), Safonov and Athans
(1977), Safonov (1980) and Molander and Willems (1980). An analysis of sta-
bility margins for nonlinear optimal regulators was given by Glad (1984), and
Tsitsiklis and Athans (1984).

2.6 Dynamic Games and Robust Control

Already in the 1960’s it was clear that for robustness against disturbances
and unmodeled dynamics various stability margins are insufficient, even in
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linear systems. A general framework for worst case designs using dynamic
(differential) games was introduced by Isaacs (1965). Their rapid development
in the 1970’s can be traced through the textbooks by Bryson and Ho (1969),
Başar and Olsder (1982), Krasovskii and Subbotin (1988) and Krasovskii and
Krasovskii (1995). Dorato and Drenick (1966) were the first to suggest that
this dynamic game framework be employed for robust control. Some early
attempts in this direction were made by Medanić (1967), Başar and Mintz
(1972), Bertsekas and Rhodes (1971, 1973), and Mageirou (1976), to mention
only a few. However, they haven’t led to what we today call robust control,
which instead was launched by Zames (1981) with an input-output formulation
and H∞ norms in the frequency domain. The development of H∞ designs,
which dominated most of the 1980’s, is well known and, as a linear topic, is
not within the scope of this survey.

To derive nonlinear counterparts of linear H∞ results, most researchers had to
return to state-space models, that is to dynamic games. This return, implicit
in several linear results, including that of Doyle et al. (1989), was made explicit
in the monograph by Başar and Bernhard (1995), which provided a rigorous
foundation for robust nonlinear control and disturbance attenuation designs
in the 1990’s.

3 ACTIVATED CONCEPTS

Nonlinear concepts remained descriptive for a long time. Their ‘feedback ac-
tivation’ began only recently, when some local properties were replaced with
new concepts applicable to large regions of the state space. The main effort
of activation is to make new concepts dependent on, and transformable by
feedback control. A prominent example is the concept of control Lyapunov
function whose derivative depends on the control and can be made negative
by feedback. Another example is feedback passivity, that is, the possibility to
render a system passive using feedback.

3.1 Input-to-State Stability

For systems with disturbances, Sontag (1989a) replaced the local notion of
total stability with a more useful global concept of input-to-state stability
(ISS). The system

ẋ = f(x, w) , f(0, 0) = 0 (9)
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is ISS if there exist a class-KL function 2 β(·, ·) and a class-K function γ(·)
such that

|x(t)| ≤ max

{
β(|x(0)|, t) , γ

(
sup

0≤τ≤t
|w(τ)|

)}
. (10)

When the effect of the initial condition β vanishes as t → ∞, the remaining
term γ(·) is an ISS-gain of the system (9) from disturbance w to state x.

Sontag and Wang (1995) showed that the ISS property is equivalent to the
existence of an ISS-Lyapunov function

α1(|x|) ≤ V (x) ≤ α2(|x|) (11)

such that

LfV (x, w) ≤ −α3(|x|) + σ(|w|) , (12)

where α1(·), α2(·), α3(·) ∈ K∞ and σ(·) ∈ K. An alternative characterization
using α4(·), ρ(·) ∈ K is

|x| ≥ ρ(|w|) ⇒ LfV (x, w) ≤ −α4(|x|) . (13)

Then, the ISS-gain γ(·) in (10) is the composition γ(·) = α−1
1 ◦ α2 ◦ ρ(·). A

further refinement by Teel (1996a), and Sontag and Wang (1996) is the notion
of asymptotic gain and its relation to ISS.

A small-gain theorem formulated by Hill (1991), and Mareels and Hill (1992),
was extended in the ISS framework by Jiang et al. (1994), and further gener-
alized by Teel (1996a,b). As an illustration, we quote an ISS small-gain result
for the interconnected subsystems

ẋ1 = f1(x1, x2) (14)

ẋ2 = f2(x2, x1) .

2 K is the class of functions IR≥0 → IR≥0 which are zero at zero, strictly increasing
and continuous. K∞ is the subset of class-K functions that are unbounded. L is the
set of functions IR≥0 → IR≥0 which are continuous, decreasing and converging to
zero as their argument tends to +∞. KL is the class of functions IR≥0×IR≥0 → IR≥0

which are class-K on the first argument and class-L on the second argument. The
inverse of a class-K∞ function exists and is also K∞ . The composition of class-K
functions is also class-K .
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If the x1-subsystem with x2 as its input has ISS-gain γ1(·), and the x2-
subsystem with x1 as its input has ISS-gain γ2(·), then the interconnection
is globally asymptotically stable (GAS) if

γ1 ◦ γ2(s) < s , ∀s > 0 . (15)

A situation not covered by (10) is when the input w(t) is unbounded, but
has a finite energy norm. Sontag (1998a) defined the system (9) to be integral
input-to-state stable (IISS) if there exist α(·) ∈ K∞ , β(·, ·) ∈ KL , and γ(·) ∈
K such that, for all t ≥ 0,

α(|x(t)|) ≤ β(|x(0)|, t) +

t∫
0

γ(|w(τ)|)dτ. (16)

Angeli et al. (1998) showed that the IISS property is equivalent to the existence
of an IISS-Lyapunov function which differs from the ISS Lyapunov function in
that α3(·) in (12) is only positive definite, and not necessarily class-K∞. While
ISS implies IISS, the converse is not true: in the scalar system ẋ = −φ(x)+w
with saturation φ(x) = sgn(x) min{|x|, 1}, the state x(t) grows unbounded
with the constant input w(t) ≡ 2, but it remains bounded if

∫∞
0 |w(t)|dt exists,

as shown by the IISS Lyapunov function

V (x) =

x∫
0

φ(s)ds ⇒ V̇ ≤ −φ(x)2 + |w|.

3.2 Control Lyapunov Functions

The seemingly obvious concept of a Control Lyapunov Function (CLF) intro-
duced by Artstein (1983) and Sontag (1983), made a tremendous impact on
stabilization theory, which, at the end of the 1970’s was stagnant. It converted
stability descriptions into tools for solving stabilization tasks.

One way to stabilize a nonlinear system is to select a Lyapunov function V (x)
and then try to find a feedback control u(x) that renders V̇ (x, u(x)) negative
definite. With an arbitrary choice of V (x) this attempt may fail, but if V (x)
is a CLF, we can find a stabilizing control law u(x). For the nonlinear system

ẋ = f(x) + g(x)u , (17)

V (x) is a CLF if, for all x 
= 0,

LgV (x) = 0 ⇒ LfV (x) < 0 . (18)
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By standard converse theorems, if (17) is stabilizable, a CLF exists. From (18),
we see that the set where LgV (x) = 0 is significant, because in this set the
uncontrolled system has the property LfV (x) < 0. However, if LfV (x) > 0
when LgV (x) = 0, then V (x) is not a CLF and cannot be used for a feedback
stabilization design (an observation that helps eliminate bad CLF candidates).

When V (x) is a CLF, there are many control laws that render V̇ (x, u(x))
negative definite, one of which is given by a formula due to Sontag (1989b).
The construction of a CLF is a hard problem, which has been solved for special
classes of systems. For example, when the system is feedback linearizable we
can construct for it a quadratic CLF in the coordinates in which the system
is forced to become linear by a feedback transformation that cancels all the
nonlinearities. Once such a CLF is constructed, it can be used to design a
control law u(x) that avoids cancelation of useful nonlinearities. For a larger
class of systems CLF’s can be constructed by backstepping, as discussed in
Section 4.1.

3.3 CLF’s for Systems with Disturbances

The CLF concept was extended by Freeman and Kokotović (1996a,b) to sys-
tems

ẋ = f(x, w) + g(x, w)u , (19)

where w is a disturbance known to be bounded by |w| ≤ ∆, where ∆ may
depend on x. V (x) is an RCLF (a robust CLF), if for all |x| > c, a control
law u(x) can be found to render V̇ negative for any w such that |w| ≤ ∆. The
value of c depends on ∆ and on the chosen u(x). For systems jointly affine in
u and w,

ẋ = f(x) + g(x)u+ p(x)w , (20)

an ‘activated’ ISS-Lyapunov function, called ISS-CLF by Krstić et al. (1995),
is a V (x) for which a class-K∞ function ρ(·) exists such that

|x| > ρ(|w|) ⇒ ∃u : LfV (x) + LpV (x)w + LgV (x)u < 0 . (21)

Again, the set LgV (x) = 0 is critical because in it we require that

LfV (x) + |LpV (x)|ρ−1(|x|) < 0 , (22)
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which means that LfV (x) must be negative enough to overcome the effect of
disturbances bounded by |w| < ρ−1(|x|).

For systems with stochastic disturbances, Krstić and Deng (1998) introduced
a notion of ‘noise-to-state stability’ (NSS) and the corresponding NSS-CLF
convenient for this type of stabilization.

3.4 Disturbance Attenuation

The concepts of RCLF and ISS-CLF are closely related to the Hamilton-
Jacobi-Isaacs (HJI) optimality conditions for dynamic games. For the system
(19), a dynamic game is formulated by considering w as the maximizer and u
as the minimizer of the cost

J =

∞∫
0

[q(x) + r(x, u)]dt , (23)

where q(x) and r(x, u) penalize x and u in a meaningful way. In this formula-
tion the disturbance w is not penalized. Instead, it is constrained by |w| ≤ ∆,
where, as before, ∆ may depend on x. If the value V (x) of the associated game
exists and is differentiable, then it satisfies the HJI equation

0 = min
u

max
|w|≤∆

{q(x) + r(x, u) + LfV (x, w) + LgV (x, w)u} , (24)

where the functions LfV and LgV depend on w through f(x, w) and g(x, w).
The intractability of (24) motivated Freeman and Kokotović (1996a,b) to an-
alyze an inverse optimal robust control problem in which q(x) and r(x, u) are
not specified a priori. They derived conditions under which V (x), constructed
as an RCLF, is the value of a meaningful dynamic game, that is the solution
of (24) for some q(x) and r(x, u) derived a posteriori, but a priori guaranteed
to penalize both x and u. They further showed that, for (20), the pointwise
min-norm control law

uF (x) =



− Ψ(x)
LgV (x)

when Ψ(x) > 0

0 when Ψ(x) ≤ 0 ,
(25)

where Ψ(x) := LfV (x) + |LpV (x)|∆ + σ(x) and −σ(x) ≤ 0 is a ‘margin of
negativity’, is inverse optimal for a meaningful class of penalties q(x) and
r(x, u). The min-norm control law (25) was introduced earlier by Petersen
and Barmish (1987).
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As an illustration consider the cost (23) with q(x) = x2 and r(x, u) = u2 under
the constraint |w| ≤ |x| for the system

ẋ = −x3 + u+ w , (26)

where u is unconstrained. The optimal control

u�(x) = −x− x
√
x4 − 2x2 + 2 + x3 , (27)

which satisfies the HJI equation, is ‘intelligent’: it vanishes for large |x|, when
the term −x3 is sufficient for robust stabilization. The inverse optimal control
computed from (25) with V (x) = 1

2
x2 and σ(x) = x2 is

uF (x) =



x3 − 2x when x2 < 2

0 when x2 ≥ 2 .
(28)

It is as ‘intelligent’ as the optimal control, because it becomes inactive for
x2 ≥ 2, where −x3 takes care of stabilization, (see Figure 2).

−4 −3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5

x

u

Fig. 2. u�(x) -dotted, and uF (x)- solid.

An analog of the linear H∞ control is the disturbance attenuation problem
extensively studied in the books by Başar and Bernhard (1995), Isidori (1995),
van der Schaft (1996), Krstić and Deng (1998), Helton and James (1999) and
in many papers including Ball and Helton (1992), Ball et al. (1993), Ball and
van der Schaft (1996), Isidori and Astolfi (1992), Isidori and Kang (1995),
James and Baras (1995), Krener (1994), and van der Schaft (1991, 1992). In
most of these works the cost is

J =

∞∫
0

(
|h(x)|2 + |u|2 − γ2|w|2

)
dt . (29)
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It can be verified (see van der Schaft (1996)) that the corresponding HJI
equation yields a value function V (x) and a control law u�(x) which satisfy the
Bounded Real Lemma of Hill and Moylan (1976) and, hence, the dissipation
inequality

V̇ ≤ −|z|2 + γ2|w|2 , (30)

with input w and output z := (h(x), u�(x)). Thus, as in the linear case, the

L2-gain of the optimal closed-loop system is ‖z‖2

‖w‖2
≤ γ.

However, for nonlinear systems, the use of the quadratic penalty γ2|w|2 just
to obtain an L2-gain has a disadvantage illustrated by the problem

ẋ=u+ x2w , (31)

J =

∞∫
0

(x2 + u2 − γ2w2)dt ,

for which the optimal control law

u�(x) = −γ x√
γ2 − x4

(32)

exists only for x ∈ (−√
γ,

√
γ). Clearly, the disturbance w, which acts through

x2, is powerful when x2 is large and the quadratic penalty γ2w2 is insufficient
to prevent the unboundedness of x(t). This suggests that γ2|w|2 in (29) be
replaced by a class-K∞ penalty function γ(|w|) to be determined a posteriori.
Krstić and Li (1998) constructed an ISS control law to be inverse optimal for
a cost including γ(|w|), illustrated again on the system (31). With V = 1

2
x2

as an ISS-CLF, and ρ(·) in (21) taken to be ρ(|w|) = |w|, an ISS control law
is u = −(x2 +

√
x4 + 1)x. This control law satisfies the HJI condition with the

cost

J =

∞∫
0

(
2x2

x2 +
√
x4 + 1

+
2u2

x2 +
√
x4 + 1

− 27

64
w4

)
dt . (33)

Thus, for all x and all w the ISS property is achieved, but the optimality is
with the penalty γ(|w|) = 27

64
w4 rather than γ2w2.
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3.5 Cost-to-Come Function for Output Feedback

The disturbance attenuation problem for system (19) is more realistic when
instead of the full state x, only an output y is assumed to be available

y = c(x) + v , (34)

where v is the unknown measurement noise. The counterpart of cost (29) in
this case is

J =

∞∫
0

(|h(x)|2 + |u|2 − γ2|w|2 − γ2|v|2)dt−N(x0) , (35)

where N(x0) is a positive definite cost on the unknown initial state. For this
problem Didinsky and Başar (1992), Didinsky et al. (1993), Başar and Bern-
hard (1995) introduced the concept of a cost-to-come function W (t, x), which
is dual to the cost-to-go function V (x) in traditional dynamic programming.
Whereas V (x) provides the evolution of the worst case cost from any time-
state pair (t, x) into the future, W (t, x) describes the worst cost from any
time-state pair (t, x) back to the past, with the maximization taken over all
disturbances w that are consistent with all the observations y[0,t] and controls
u[0,t] up to time t.

As shown by Başar and Bernhard (1995), given y[0,t], u[0,t] and x(t) = x, the
cost-to-come function satisfies the forward HJB equation

∂W

∂t
= max

w
{ − LfW (t, x, w) − LgW (t, x, w)u+ |h(x)|2 (36)

+|u|2 − γ2|w|2 − γ2|y − c(x)|2 } ,
with the boundary condition N(x) at t = 0.

The significance of the dual concepts of cost-to-go and cost-to-come functions
is that for any time-state pair (t, x) they allow the total cost to be additively
decomposed into two parts: forward-looking and backward-looking. A further
maximization over x at the instant when they meet yields a performance-
driven worst value of the state at that instant, as a function of the current
and past values of the measurement y, that is,

x̂(t) = arg max
x

[V (x) +W (t, x)] , (37)

where the dependence on y comes through the cost-to-come function W . If
the maximum is unique, then certainty equivalence applies, which means that
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a control that guarantees a disturbance attenuation level of γ is the solution
u�(x̂(t)) of the state feedback problem and is obtained from the HJI equation

min
u

{max
w

[LfV (x, w) + LgV (x, w)u+ |h(x)|2 + |u|2 − γ2|w|2]} = 0 . (38)

The task of finding the cost-to-come function, studied by Helton and James
(1999) and others, is extremely difficult. The dependence on the measurement
history makes solving the forward equation (36) generally an infinite dimen-
sional problem. Only in problems with special structures has it been possible
to obtain finite dimensional solutions, as in the linear-quadratic problem (the
H∞ control problem). In this case, W is a quadratic function of x, and de-
pends on u and y linearly. A finite dimensional solution can also be obtained
for the class of worst case parameter identification problems where the system
dynamics are nonlinear, but the unknown constant parameters enter linearly.
In this case the cost-to-come analysis of Didinsky et al. (1995) leads to ex-
plicit expressions for a class of robust identifiers, with a built-in disturbance
attenuation feature. Another class of problems where the cost-to-come func-
tion can be computed explicitly (and is finite dimensional) is adaptive control
(formulated as disturbance attenuation) where the system is in strict feedback
form, and the unknown parameters again enter linearly. Although in this case
the maximum in (37) is not unique, explicit constructions for the disturbance
attenuating controllers were obtained with state feedback by Pan and Başar
(1998), and with output feedback by Tezcan and Başar (1999).

3.6 Nonlinear Relative Degree and Zero Dynamics

The development of nonlinear geometric methods was a remarkable achieve-
ment of the 1980’s, presented in the books by Isidori (1995), Nijmeijer and
van der Schaft (1990), Marino and Tomei (1995) and in the numerous papers
referenced therein. Geometric concepts permeate our current thinking about
nonlinear systems. Two of them need to be made explicit here: nonlinear rela-
tive degree and zero dynamics. These indispensable tools bring into focus the
common input-output structure of linear and nonlinear systems.

For a scalar transfer function, the relative degree is the difference between
the number of poles and zeros. This is also the number of times the output
y(t) needs to be differentiated for the input u(t) to appear. For a state-space
realization (A, b, c, d), the relative degree is zero if d 
= 0, it is one if d = 0 and
cb 
= 0, it is two if d = 0, cb = 0 and cAb 
= 0, etc. For the nonlinear system

ẋ= f(x) + g(x)u

y= h(x) + j(x)u , x ∈ IRn , u, y ∈ IR , (39)
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the relative degree at a point x� is zero if j(x�) 
= 0, it is one if j(x�) is
identically zero on a neighborhood of x� and Lgh 
= 0 at x�. This is so because

ẏ =
∂h

∂x
ẋ = Lfh + Lgh u , (40)

so that, if Lgh is nonzero, then the input u(t) appears in the expression for
the first derivative ẏ(t) of the output y(t). If Lgh is zero, we can differentiate
ẏ once more and check whether u appears in the expression for ÿ(t), etc. In
contrast to linear systems, the relative degree of nonlinear systems may not
be defined.

When the system (39) has relative degree one, its input-output linearization
is performed with the feedback transformation

u = (Lgh)
−1(v − Lfh) ⇒ ẏ = v , (41)

which cancels the nonlinearities in the ẏ-equation and converts it into ẏ = v.
Selecting new state coordinates in which y is one of the states, the remaining
n − 1 equations with y(t) ≡ 0 and v(t) ≡ 0 constitute the zero dynamics,
that is, the dynamics which remain when the output is kept at zero. If the
relative degree is two, then the linear part of the system is ÿ = v, the chain of
two integrators. In this case the zero dynamics are described by the remaining
n− 2 equations y(t) = ẏ(t) ≡ 0 and v(t) ≡ 0.

The relative degree and the zero dynamics cannot be altered by feedback. For
this reason, systems with unstable zero dynamics, nonminimum phase systems,
are much harder to control than minimum phase systems in which the zero
dynamics are asymptotically stable. In weakly minimum phase systems the
zero dynamics are stable, but not asymptotically stable.

Two caveats need to be made about input-output linearization (41) as a design
tool. First, there may be nonlinearities that should not be canceled because
they help the design task, like −x3 which helps us to stabilize ẋ = x− x3 + u.
Second, in the presence of modeling errors, the concepts of relative degree and
zero dynamics may be nonrobust. Sastry et al. (1989) showed that regular
perturbations in a system may lead to singularly perturbed unstable zero
dynamics. It is therefore important that geometric concepts be applied jointly
with the analytical tools needed to guarantee robustness.
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3.7 Feedback Passivation

Achieving strict passivity (SPR) with feedback was, in the 70’s, a common
tool for adaptive control of linear systems. A result of Fradkov (1976), made
more accessible by Fradkov and Hill (1998), is that (A,B,C) can be rendered
SPR with feedback if and only if it is minimum phase and relative degree
one. In nonlinear control, the use of passivation was motivated by a difficulty
encountered in feedback stabilization of linear-nonlinear cascade systems

ẋ= f(x, ξ)

ξ̇=Aξ +Bu (42)

resulting from input-output linearization. The difficulty was that the GAS
property of the subsystem ẋ = f(x, 0) is not sufficient to achieve GAS of the
whole cascade with ξ-feedback u = Kξ, as illustrated by

ẋ=−x+ x2ξ (43)

ξ̇= u .

With feedback u = kξ, for every finite k < 0, there exist initial conditions
from which x(t) escapes to infinity. Thus, feedback is required from both ξ
and x, that is,

u = Kξ + v(x, ξ) . (44)

Such a control law was designed by Byrnes and Isidori (1989) for the special
case of (42) with ξ̇ = Bu, where B is a square nonsingular matrix. Kokotović
and Sussmann (1989) extended this design to feedback passivation where the
cascade (42) is represented as the feedback interconnection of the blocks H1

and H2 in Figure 1. The final result in Figure 3 is arrived at in several steps.
First, an output η of the linear block H1 is selected to be the input of the
nonlinear block H2, that is, the x-subsystem of (42) is rewritten as

ẋ = f(x, 0) + g(x, ξ)η , (45)

where several choices of η = Cξ may be available. An output y is then chosen
to render (45) passive from η to y. If a Lyapunov function V (x) is known for
ẋ = f(x, 0) so that LfV ≤ 0, then y = LgV

T renders (45) passive because

V̇ = LfV + LgV η ≤ LgV η = yTη . (46)
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Finally, if the linear block H1 is rendered PR by feedback Kξ, the passivity
theorem will be satisfied by closing the loop with −y = −LgV T as in Figure
3.

LgV
xy η

−

K

ξ̇ = Aξ +Bu
u ξ

C

ẋ = f(x, 0) + g(x, ξ)η

Fig. 3. Feedback passivation design.

For the existence of K in the global stabilization of the linear-nonlinear cas-
cade (42) with (44), Kokotović and Sussmann (1989), and Saberi et al. (1990)
showed that the weak minimum phase property of (A,B,C) is necessary unless
some other restriction is imposed on the nonlinear part. Upon an extension
by Ortega (1989), Byrnes et al. (1991) proceeded to prove that at x = 0, the
nonlinear system (39) with j(x) ≡ 0 is feedback passive with a positive definite
storage function S(x) if and only if it is relative degree one and weakly min-
imum phase. Indeed, when the condition (LgS)T (x) = h(x) of the nonlinear
PR Lemma (5) is differentiated, noting that ∂S

∂x
= 0 at x = 0, the result is

gT
∂2S

∂x2
g = Lgh at x = 0.

Along with rank
{
∂h
∂x

(0)
}

= m, this implies that the relative degree is one.

To deduce the weak minimum phase condition we differentiate (LgS)T (x) =
h(x) with respect to time in the zero dynamics manifold h(x) ≡ 0. Then we
ascertain from Ṡ ≤ uy and y(t) ≡ 0 that LfS ≤ 0, which is the weak minimum
phase property.

An in-depth study of obstacles to global, or even semiglobal 3 stabilization of
the cascade (42) was initiated by Sussmann (1990), and pursued by Sussmann
and Kokotović (1991), and Byrnes and Isidori (1991). One of the main obsta-
cles was identified to be the peaking phenomenon caused by high-gain feedback
u = Kξ. A further analysis by Sepulchre et al. (1997) and Sepulchre (2000)

3 The term semiglobal stabilizability means that for any desired finite region of
attraction, a feedback controller exists.

19



showed that higher relative degree systems are prone to destabilizing tran-
sients caused by not only fast but also slow peaking. For nonminimum phase
systems global stabilization can be achieved only with further restrictions on
the cross-term g(x, ξ), as discussed by Braslavsky and Middleton (1996), and
Sepulchre and Arcak (1998), where these restrictions are characterized by a
relationship between the locations of the nonminimum phase zeros and the
growth of g(x, ξ) in x and ξ.

3.8 Stability Margins

Small-gain and passivation designs guarantee nonlinear analogs of gain and
phase margins for several types of dynamic uncertainties, as in the system

ẋ= f(x) + g(x)[u+ w(x, z, u)]

ż= q(x, z, u) , (47)

where the z-subsystem with the output y = u+w(x, z, u) represents unmodeled
dynamics. A GAS control law α(x) designed for the nominal model ẋ = f(x)+
g(x)u, will in general fail to achieve GAS of the actual system (47). Small-
gain redesigns applying condition (15) were proposed by Jiang et al. (1994),
Krstić et al. (1996), Praly and Wang (1996), and Jiang and Mareels (1997).
As an illustration we let w(x, z, u) = z, q(x, z, u) = q(z, x) and assume that
the unmodeled dynamics are ISS with x considered as input, that is,

|z(t)| ≤ max

{
β(|z(0)|, t) , γ1

(
sup

0≤τ≤t
|x(τ)|

)}
. (48)

The nominal control law α(x) was designed for V (x), such that Lf+gαV < 0,
x 
= 0. For redesign, we select a class-K function γ2(·) such that γ1 ◦γ2(s) < s,
to be assigned as the ISS-gain from w to x. This gain assignment is achieved
by a continuous approximation of the redesigned control law

u = α(x) − sgn(LgV (x))ρ−1(|x|) , (49)

where ρ(·) is determined from γ2(s) = σ−1
1 ◦ σ2 ◦ ρ(s), with σ1(·) and σ2(·) as

in (11). The resulting feedback system can tolerate all unmodeled dynamics
that satisfy (48). In this sense, (48) represents an ISS-gain margin.

An alternative redesign by passivation does not require that unmodeled dy-
namics have bounded ISS-gain. Instead, the class of unmodeled dynamics is
restricted by a passivity requirement on the z-subsystem in (47) with u as the
input and y = u+ w(x, z, u) as the output.
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The passivation redesigns of Janković et al. (1999b), extended by Hamzi and
Praly (1999), are based on V (x) as a control Lyapunov function (CLF) for the
nominal system ẋ = f(x) + g(x)u. For example, if V (x) has the property

LfV (x) < |LgV (x)|2 , ∀x 
= 0 , (50)

then the control law

u = −kLgV (x) , k ≥ 1 (51)

guarantees GAS not only for the nominal system, but also for all stable un-
modeled dynamics which remain passive with the output y− 1

k
u. This stability

margin is due to the fact that the control law in (51) is optimal with respect
to (6) with R(x) = I, because then the value function V (x) satisfies (50). For
the case when V (x) does not satisfy (50), Janković et al. (1999b) construct a
new Ṽ (x) which recovers the same margin.

Both small-gain and passivity margins restrict the unmodeled dynamics to
have relative degree zero. With a higher relative degree, the preserved prop-
erties may not be global. A singular perturbation result (Sepulchre et al.,
1997, Theorem 3.18) shows that they can be preserved in large regions if the
unmodeled dynamics are much faster than the nominal closed loop system.
For feedforward systems, the redesign by Arcak et al. (2000) achieves global
robustness for a wide range of unmodeled dynamics.

4 DESIGN PROCEDURES

For nonlinear control the 1990’s started with a breakthrough: backstepping,
a recursive design for systems with nonlinearities not constrained by linear
bounds. Although the idea of integrator backstepping may be implicit in
some earlier works, its use as a design tool was initiated by Tsinias (1989b,
1991), Byrnes and Isidori (1989), Sontag and Sussmann (1988), Kokotović
and Sussmann (1989), and Saberi et al. (1990). However, the true potential
of backstepping was discovered only when this approach was developed for
nonlinear systems with structured uncertainty. With adaptive backstepping,
Kanellakopoulos et al. (1991a,b) achieved global stabilization in the presence
of unknown parameters, and with robust backstepping, Freeman and Koko-
tović (1992, 1993), and Marino and Tomei (1993b) achieved it in the presence
of disturbances. The emergence of adaptive, robust and observer-based back-
stepping was described in the 1991 Bode Lecture, Kokotović (1992).

The ease with which backstepping incorporated uncertainties and unknown
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parameters contributed to its instant popularity and rapid acceptance. At the
same time, its limitation to a class of pure feedback (lower triangular) systems
stimulated the development of other recursive procedures, such as forwarding
by Teel (1992), Mazenc and Praly (1996), and Janković et al. (1996), applicable
to feedforward systems. Interlacing the steps of these procedures, it is often
possible to design other types of systems. The rapidly growing literature on
recursive nonlinear designs includes the books by Krstić et al. (1995), Marino
and Tomei (1995), Freeman and Kokotović (1996b), Sepulchre et al. (1997),
Krstić and Deng (1998), Dawson et al. (1998), and Isidori (1999).

4.1 Construction of RCLF’s by Backstepping

The purpose of backstepping is the construction of various types of CLF’s:
robust, adaptive etc. Backstepping constructions of RCLF’s by Freeman and
Kokotović (1992), and Marino and Tomei (1993b) are illustrated on the system

ẋ1 =x2 + w1(x, t) (52)

ẋ2 =u+ w2(x, t) ,

where the uncertainties w1 and w2 are bounded by known functions

|w1(x, t)| ≤∆1(x1) (53)

|w2(x, t)| ≤∆2(x1, x2) ,

which are allowed to grow faster than linear, like ∆1(x1) = x2
1. The crucial

restriction of backstepping is imposed on the structure of bounding functions
∆1, ∆2 in (53), allowing ∆i to depend only on x1, · · · , xi. For the ease of presen-
tation it will be assumed that ∆1(0) = 0, ∆2(0, 0) = 0, and that the derivative
of ∆1(x1) exists and is zero at x1 = 0. When this is not the case, a slightly
modified procedure achieves boundedness and convergence to a compact set
around x = 0.

Backstepping starts with a part of the system for which the construction of
an RCLF is easy, as in the case when the uncertainty is matched. Lyapunov
minmax designs for matched uncertainties were developed around 1980 by
Gutman (1979), Corless and Leitmann (1981) and others, presented in (Khalil,
1996b, Section 13.1).

In the first equation of (52) the uncertainty w1 is matched with x2. This means
that if x2 were our control, it would be able to counteract the worst case of w1

by x2 = µ1(x1). To design such a virtual control law µ1(x1) for the x1-equation
we can use V1 = x2

1 as our RCLF. Then to render V̇1 negative we seek µ1(x1)
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which, for x1 
= 0 and all w1(x, t) bounded by (53), satisfies

x1[µ1(x1) + w1(x, t)] ≤ x1µ1(x1) + |x1|∆1(x1) < 0 . (54)

A possible choice is

µ1(x1) = −x1 − sgn(x1)∆1(x1) , (55)

where µ′
1(x1) := dµ1/dx1 exists because of the assumptions on ∆1.

It is consistent with the idea of x2 being a virtual control that we think of
x2 − µ1(x1) as an error to be regulated to zero by the actual control u. This
suggests that we examine

V2(x) = V1(x1) + [x2 − µ1(x1)]
2 (56)

as a candidate RCLF for the whole system (52). Our task is then to achieve,
with some u = µ2(x),

V̇2 = 2x1[x2 + w1] + 2[x2 − µ1(x1)][u+ w2 − µ′
1(x1)(x2 + w1)] < 0 (57)

for all x 
= 0, and all admissible w1(x, t) and w2(x, t). The choice of µ1(x1) in
(55) to satisfy (54) has made this task easy, because it has reduced (57) to

V̇2 ≤ −2x2
1 + 2[x2 − µ1(x1)] [x1 + u+ w2 − µ′

1(x1)(x2 + w1)] < 0 , (58)

where u matches the composite uncertainty

wc(x, t) := w2(x, t) − µ′
1(x1)w1(x, t) , (59)

with the bound |wc(x, t)| < ∆c(x) computed from ∆1, ∆2 and µ′
1. We first let

u = µ2(x) = −[x2 − µ1(x)] − x1 + µ′
1(x1)x2 + ur(x) . (60)

Then, the inequality to be satisfied by ur(x) is of the same form as the in-
equality (54) and, hence,

ur(x) = −sgn[x2 − µ1(x1)]∆c(x) . (61)

The so designed µ2(x) yields

V̇2 ≤ −2x2
1 − 2[x2 − µ1(x1)]

2 , (62)
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which means that GAS is achieved.

This example highlights the key recursive feature of backstepping: the RCLF
for step k + 1 is constructed as

Vk+1 = Vk + [xk − µk−1(x1, · · · , xk−1)]
2, (63)

where Vk is the k-th RCLF and µk−1 is the virtual control law which renders
V̇k < 0 for xk = µk−1(x1, · · · , xk−1).

Backstepping also serves for ISS-CLF construction, developed by Praly and
Jiang (1993), Jiang et al. (1994), Krstić et al. (1995), and illustrated here on
the system

ẋ= f(x) + g(x)ξ + p(x)w

ξ̇= u . (64)

This is the system (20) augmented by one integrator. We assume that V1(x) is
an ISS-CLF for the x-subsystem with ξ as its virtual control. In other words,
we can find µ1(x) such that ξ = µ1(x) satisfies the dissipation inequality

V̇1 = Lf+gµ1V1 + LpV1w ≤ −α1(|x|) + β1(|w|) , (65)

with a class-K∞ function α1(·) and a class-K function β1(·). Then, an ISS-CLF
for (64) is

V2(x, ξ) = V1(x) + [ξ − µ1(x)]
2 , (66)

and, with the control law

u = µ2(x, ξ) = −(1 + |Lpµ1|2)(ξ − µ1) − LgV1 + Lf+gξµ1 , (67)

the closed-loop system (64)-(67) has the ISS-property

V̇2 ≤ −α2



∣∣∣∣∣∣∣
x

ξ

∣∣∣∣∣∣∣

+ β2(|w|) , (68)

which is analogous to the ISS property (65).

Teel and Praly (2000) considered the problem of assigning a general supply
rate α(x, ξ, w) instead of −α2+β2 in (68). Backstepping procedures for ISS, L2,
and similar gain assignment tasks appear as special cases of their procedure.
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Marino et al. (1994), and Isidori (1996b,a) employed backstepping to solve
an almost disturbance decoupling problem. For systems with stochastic dis-
turbances backstepping designs were developed by Krstić and Deng (1998),
and Pan and Başar (1999). Freeman and Praly (1998) extended backstepping
to control inputs with magnitude and rate limits, and Jiang and Nijmeijer
(1997) to nonholonomic systems. An undesirable property of backstepping is
the growth of ‘nonlinear gains’, which Freeman and Kokotović (1993) coun-
teracted by ‘flattened’ Lyapunov functions.

4.2 Backstepping with Optimality

With backstepping we can construct RCLF’s, ISS-CLF’s or NSS-CLF’s for
systems in the strict feedback form

ẋi = fi(x
i) + gi(x

i)xi+1 + pi(x
i)Tw

ẋn = fn(x) + gn(x)u+ pn(x)
Tw , (69)

where xi := (x1, · · · , xi)T , x = xn, and gi 
= 0, i = 1, · · · , n, for all x. With an
ISS-CLF obtained at the last step, we can design an ISS control law. It is of
practical interest to render this design inverse optimal, that is, to verify that
the constructed ISS-CLF satisfies an Isaacs inequality. Several inverse optimal
constructions were proposed by Pan and Başar (1998), Krstić and Deng (1998)
and Ezal et al. (2000). The construction by Ezal et al. (2000) is particularly
useful because it also achieves local optimality, that is, the linearization of the
designed nonlinear feedback system is H∞-optimal. In this way earlier optimal
designs for linear systems are incorporated in nonlinear designs.

The locally optimal backstepping is now illustrated on the system

ẋ1 =x2
1 + x2 + w (70)

ẋ2 =u ,

with the prescribed local cost

J =

∞∫
0

(x2
1 + x2

2 + u2 − γ2w2)dt . (71)

When the nonlinearity x2
1 is ignored, this is a linear H∞ problem with full

state measurement. For the linear problem the limiting attenuation level is
γ� = 1.27, so we select γ = 5 as the desired level. The H∞-optimal linear
control ulin = −1.06x1 − 1.78x2 is easily calculated via the Riccati matrix P .
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To retain ulin as the linear part of the nonlinear backstepping control law, Ezal
et al. (2000) used the Cholesky factorization P = LTDL, where D is diagonal
and L is lower triangular with the identity in its diagonal. The rest of the
nonzero entries of L serve as coefficients, row by row, for the linear parts of
virtual control laws. The derivative of V1 = 1.18x2

1, where 1.18 comes from D,
is expressed as

V̇1 = −1.36x2
1 + 25w2 − 25(w − ν1)

2 + 2.36x1(x2 − µ1) , (72)

where ν1 = 1
γ2 1.18x1 = 0.05x1 is the worst case disturbance. The virtual

control that renders V̇ most negative for w = ν1 is µ1(x1) = −0.6x1 − x2
1,

where −0.6 comes from L and −x2
1 cancels the nonlinearity 4 . This µ1(x1)

satisfies the dissipation inequality

V̇1 ≤ −1.36x2
1 + 25w2 . (73)

The final ISS-CLF is V2 = V1 + 1.78(x2 − µ1(x1))
2, where 1.78 comes from D.

For the worst case disturbance the optimal control is

u = −1.78 r−1(x)(x2 − µ1(x1)) . (74)

Meaningful penalties q(x) and r(x) for inverse optimality are obtained with

r−1(x) =




1 + σ(x) if σ(x) ≥ 0

1 if σ(x) < 0 .
(75)

A possible choice, σ(x) = 1.8x1 + 1.05(x2 − µ1(x1))
2, renders q(x) positive

definite. Other choices can be made, but, to be consistent with the local H∞-
optimal problem, they all must satisfy r(0) = R and ∂2q

∂x2 (0) = Q, where Q and
R are the penalty matrices in the prescribed quadratic H∞-cost. In the above
example Q = I, R = 1.

The superiority of the nonlinear design is visible from the solutions plotted in
Figure 4 for the case when w = 0. With the linear control law, the stability
region is only to the left of the boundary Ms, while with the nonlinear control
it is the whole plane. The nonlinear controller not only achieves GAS but
it also improves the overall performance. This can be seen from the pair of
trajectories marked by A, where the transient swing of the solid curve is much
smaller.

4 In virtual control laws cancelation is harmless, but is to be avoided in the actual
control law.

26



−0.2 0 0.2 0.4 0.6 0.8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 x
2

 x
1

←  M
s

 A →
Linear   
Nonlinear

Fig. 4. Linear (dashed), and nonlinear (solid) designs.

4.3 Adaptive Nonlinear Control

In the adaptive control problem the uncertainty is an unknown parameter
vector θ and its estimate θ̂(t) is used in the design of a control law. A certainty
equivalence design, common in adaptive linear control, is not applicable to
systems with strong nonlinearities like x2. To see why, consider the system

ẋ = x+ θx2 + u , (76)

and let its certainty equivalence control be u = −2x − θ̂x2. It turns out that
even with an exponentially convergent estimate |θ̂(t) − θ| ≤ ce−at, some solu-
tions of

ẋ = −x− (θ̂ − θ)x2 (77)

escape to infinity. For the matched case (76), the standard Lyapunov design
furnishes a parameter update law which is faster than exponential. This de-
sign was extended by Kanellakopoulos et al. (1991c) to systems in which θ is
separated from u by no more than one integrator, like ẋ1 = x2 + θx2

1; ẋ2 = u.

The real difficulties were encountered in the ‘benchmark problem’

ẋ1 =x2 + θx2
1

ẋ2 =x3 (78)

ẋ3 =u ,

presented by Kokotović and Kanellakopoulos (1990). Global stabilization of
(78), and convergence of x(t) were finally achieved with the first, overparametrized
version of adaptive backstepping by Kanellakopoulos et al. (1991a,b), which
also employed the nonlinear damping of Feuer and Morse (1978). Jiang and
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Praly (1991) reduced the overparametrization by one half, and the tuning
functions method of Krstić et al. (1992) completely removed it.

The current form of adaptive backstepping, described in the book by Krstić et
al. (1995), will now be explained with the help of the adaptive CLF (ACLF).
For the x-subsystem of the augmented system

ẋ= f(x) + F (x)θ + g(x)ξ (79)

ξ̇= u , x ∈ IRn; ξ, u ∈ IR, θ ∈ IRp, (80)

with ξ as its virtual control, V (x, θ) is an ACLF if there exists α1(x, θ) such
that for all x 
= 0, and all θ,

∂V1

∂x1

[
f(x) + F (x)

(
θ +

∂V1

∂θ

T
)

+ g(x)α1(x, θ)

]
< −σ1(x, θ) , (81)

where σ1(x, θ) ≥ 0. Then, a virtual adaptive controller for the x-subsystem is

ξ=α1(x, θ̂) (82)

˙̂
θ= τ1(x, θ̂) := F T (x)

∂V1

∂x1

T

(x, θ̂) ,

where τ1 is the first tuning function. The stability properties of the feedback
system (79),(82) are established with

V̄1(x, θ̂) = V1(x, θ̂) +
1

2
|θ̂ − θ|2 . (83)

As always, the purpose of backstepping is to construct a CLF, in this case an
ACLF, for the augmented system (79),(80). Again, a candidate is

V2(x, ξ, θ) = V1(x, θ) +
1

2
(ξ − α1(x, θ))

2 . (84)

This candidate wins, because there exists α2(x, ξ, θ) and σ2(x, ξ, θ) ≥ 0 such
that

∂V2

∂(x, ξ)


 f(x) + F (x)

(
θ + ∂V2

∂θ

T
)

+ g(x)ξ

α2(x, ξ, θ)


 < −σ2(x, ξ, θ) , (85)

for all x 
= 0, ξ 
= 0, where expressions for α2(x, ξ, θ) and σ2(x, ξ, θ) can be
obtained by a short calculation. With V2(x, ξ, θ) as an ACLF, an adaptive
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controller for (79), (80) is

u = α2(x, ξ, θ̂) ,
˙̂
θ = τ2(x, ξ, θ̂) , (86)

where the update law is the second tuning function

τ2(x, ξ, θ̂) = τ1(x, θ̂) −
(
∂α1

∂x

)T
(ξ − α1) . (87)

The boundedness of x(t), ξ(t), θ̂(t) and the convergence x(t) → 0, ξ(t) → 0
are easy to prove with

V̄2 = V1(x, ξ, θ̂) +
1

2
|θ̂ − θ|2 . (88)

The recursive formula for ACLF’s Vi is as in (84) and for the tuning functions
τi is as in (87). A similar recursive formula is available for αi.

An alternative estimation-based approach to adaptive nonlinear control was
motivated by adaptive designs for linear systems. The status of this line of
research in 1990 was described by Praly et al. (1991). For an estimation-based
design to succeed in nonlinear systems, the traditional certainty equivalence
control law had to be replaced by a stronger control law. Krstić and Kokotović
(1995, 1996) used ISS-backstepping to achieve ISS properties with respect
to θ̂(t) − θ and its derivative as unknown bounded disturbances. This ISS
controller can be used in conjunction with most standard adaptive estimators.

Because the newly developed adaptive nonlinear controllers had no counter-
parts in adaptive linear control, it was of interest to specialize them to linear
systems and compare them with traditional adaptive controllers. Krstić et al.
(1994) showed that the new designs far outperformed their predecessors.

Extensions of adaptive backstepping to a wider class of systems were made
by Seto et al. (1994). Asymptotic properties, transient performance, robust-
ness and dynamic extensions of the new adaptive controllers were further
investigated by Zhang et al. (1996), Ikhouane and Krstić (1998), Lin and
Kanellakopoulos (1998), Sira-Ramı́rez et al. (1997), Jiang and Praly (1998)
and several other authors. The systems in the form (69) containing both un-
known parameters θ and bounded disturbances w(x, t) can be handled by a
combination of adaptive and robust backstepping as described by Freeman et
al. (1998b). The difficult problem of nonlinear parameterizations has recently
been addressed by Bošković (1998), Annaswamy et al. (1998), and Kojić et al.
(1998).
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4.4 Nested Saturation and Forwarding

Backstepping does not apply to systems with feedforward paths, such as

ẋ1 =x2 + x2
3

ẋ2 =x3 (89)

ẋ3 =u ,

where x2
3 in the first equation constitutes a path bypassing the x2-integrator.

With his nested saturation procedure, Teel (1992, 1996a) initiated the devel-
opment of a family of forwarding designs applicable to feedforward systems,
that is, systems without feedback paths like

ẋ1 =x2 + ϕ1(x2, x3, u)

ẋ2 =x3 + ϕ2(x3, u) (90)

ẋ3 =u .

The only open-loop instability in these systems is due to the chain of inte-
grators which is easy to stabilize with linear feedback u = Kx. However, this
may result in an insufficient stability region because of the destabilizing feed-
back loops closed through feedforward nonlinearities like x2

3 in (89). To keep
the gains of these loops small for large x, Teel employed saturation elements,
nested loop by loop.

For the benchmark system (89), Teel started by stabilizing the (x2, x3)-subsystem
with a linear feedback, say, u = −x2−x3+v, where v is a new control variable.
Then, using z := x1 + x2 + x3 to replace x1 in (89) yields

ż=x2
3 + v

ẋ2 =x3 (91)

ẋ3 =−x2 − x3 + v .

At this point a saturation element v = −φ(z) is employed to guarantee that
the feedback interconnection in Figure 5 of the (x2, x3)-block H1(s) = s

s2+s+1

and the nonlinear z-blockH2 satisfies a small-gain condition as in Teel (1996a).
For system (90) one more saturation element may be needed for gain reduction
in the (x2, x3)-subsystem because of its nonlinearity ϕ2(x3, u).

The nested saturation procedure was extended by Teel (1996a) to a general
class of feedforward systems including the systems considered by Sussmann et
al. (1994).

30



φ(·) 1

s

z

H1(s)

−

−
x3

(·)2

Fig. 5. Achieving small-gain with a saturation element.

An alternative to Teel’s procedure is the Lyapunov forwarding procedure de-
veloped by Mazenc and Praly (1996), and Janković et al. (1996). It treats a
feedforward system as a connection of cascade subsystems in the form

ż= f(z) + ψ(z, ξ)

ξ̇= a(ξ) , (92)

where ξ̇ = a(ξ) with a Lyapunov function U(ξ) is GAS and locally expo-
nentially stable. The growth of |ψ(z, ξ)| in |z| is not higher than linear. The
subsystem ż = f(z) is globally stable with a Lyapunov function W (z), that
is, LfW (z) ≤ 0 for all z. For the cascade (92) a Lyapunov function V0(z, ξ)
constructed by Janković et al. (1996) is of the form

V0(z, ξ) = W (z) + Ψ(z, ξ) + U(ξ) , (93)

where W (z) for ż = f(z) and U(ξ) for ξ̇ = a(ξ) are known, and the cross term
Ψ is to be constructed to satisfy Ψ̇ = −LψW , so that

V̇0 = LfW + LaU ≤ 0 . (94)

The main burden of forwarding by Janković et al. (1996) is the evaluation of
the integral

Ψ(z, ξ) =

∞∫
0

LψW (z̃(t, z, ξ), ξ̃(t, ξ))dt , (95)

along the solutions of z̃(t, z, ξ), ξ̃(t, ξ) of (92) starting from (z, ξ) at t = 0. In
many cases this requires numerical integration, but there are problems when
Ψ(z, ξ) can be obtained in closed form, like when f(z) and a(ξ) are linear
and ψ(z, ξ) = p(ξ) is a polynomial. When (92) has an invariant manifold
decomposition, Mazenc and Praly (1996) do not employ the cross-term Ψ.
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Instead of W and U , they introduce the ‘nonlinear scaling’ �(W ) and ρ(U)
and a change of coordinates.

Recent extensions to forwarding designs were presented by Mazenc (1997),
Grognard et al. (1999), Lin and Qian (1998), and Arcak et al. (2000).

4.5 Interlacing and Indirect Passivation

When none of the recursive procedures is individually applicable to a system,
their ‘interlaced’ application may lead to a constructive design, as in (Sepul-
chre et al., 1997, Section 6.3). For example, a stabilizing control law for the
system

ẋ1 =x1 + x2 + x3
3

ẋ2 =x3 (96)

ẋ3 =x1 + u ,

can be designed using x̃2 = x1 +x2 instead of x2 and then performing one step
of forwarding followed by one step of backstepping.

The system (96) will now be used to illustrate the indirect passivation design of
Larsen and Kokotović (1998), and Janković et al. (1999a). The goal is to render
the linear part of (96) passive from v = −x3

3 to y = x3, and then establish
GAS with the passivity theorem and detectability. Because the relative degree
from v to y is two, the control law u = Kx + βv is employed to lower the
relative degree to one. The next task is to find K and β to satisfy the PR
property from v to y. This is achieved using LMI’s, and the resulting control
law

u = k1x1 + k2x2 + k3x3 + βx3
3 , (97)

achieves GAS by the passivity theorem. The rich literature on applications of
LMI’s to control problems is summarized in the book by Boyd et al. (1994).

4.6 Output Feedback Designs

Progress in nonlinear output feedback design has been slower. First, nonlinear
observers are available only for very restrictive classes of systems. Second, even
when a nonlinear observer is available, it may not be applicable for output
feedback design because the separation principle does not hold.
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For systems in which the nonlinearities appear as functions of the measured
output, the nonlinearity is canceled by an ‘output injection’ term. This class
of systems has been characterized by Krener and Isidori (1983), Bestle and
Zeitz (1983), Besançon (1999), among others. Output injection observers have
been incorporated in observer-based control designs by Kanellakopoulos et al.
(1992), Praly and Jiang (1993), Marino and Tomei (1993a), and, for stochastic
nonlinear systems, by Deng and Krstić (1999).

A class of nonlinear observers by Thau (1973), Kou et al. (1975), Banks (1981),
Tsinias (1989a), Yaz (1993), (Boyd et al., 1994, Section 7.6), Raghavan and
Hedrick (1994), and Rajamani (1998) require that the state-dependent non-
linearities be globally Lipschitz, so that quadratic Lyapunov functions can be
used for observer design.

A broader class of systems is characterized by linear dependence on unmea-
sured states. For this class, dynamic output feedback designs have been pro-
posed by Praly (1992), Pomet et al. (1993), Marino and Tomei (1995), and
Freeman and Kokotović (1996c).

For feedback linearizable systems Esfandiari and Khalil (1992), Khalil and
Esfandiari (1993), Atassi and Khalil (1999) developed an output feedback de-
sign which achieves semiglobal stabilization and approximately recovers the
performance of the underlying full state feedback. The key idea is to use a
high-gain observer, but to pass the state estimates through saturation ele-
ments, thus avoiding the destabilizing effects of observer transients with large
magnitudes. The high-gain observer has been employed in semiglobal output
feedback designs by Teel and Praly (1995), Lin and Saberi (1995), Praly and
Jiang (1998), and Isidori et al. (1999). Janković (1996) and Khalil (1996a)
used the same approach in adaptive control.

Khalil’s high-gain observer with saturation, along with the notion of complete
uniform observability of Gauthier and Bornard (1981), led to the conceptually
appealing ‘separation theorem’ by Teel and Praly (1994): If the equilibrium
x� is globally stabilizable by state feedback and the system is completely
uniformly observable, then x� is semiglobally stabilizable by dynamic output
feedback. Extensions and interpretations of this result have been presented by
Atassi and Khalil (1999), and (Isidori, 1999, Section 12.3).

To achieve global convergence of high-gain observers, Gauthier et al. (1992)
resorted to a global Lipschitz condition - a common restriction in most global
designs. In the absence of such a restriction, global stabilization by output
feedback may not be possible, as shown by the counterexamples of Mazenc et
al. (1994).

Arcak and Kokotović (1999) designed observers for systems with monotonic
nonlinearities such as x3, exp(x), etc. Their approach is to represent the ob-

33



server error system as the feedback interconnection of a linear system and
a time-varying sector nonlinearity. The convergence of the observer error to
zero is then achieved by rendering the linear system SPR with the help of LMI
computations as in the preceding section.

Isidori and Byrnes (1990) developed a nonlinear counterpart of the linear
servomechanism design of Davison, Francis and Wonham, which incorporates
an internal model of the disturbance. The internal model makes it possible to
create and locally stabilize an invariant manifold on which the tracking error
is zero. The local property restricts the disturbances and the initial conditions
to be small. Huang and Rugh (1992) allowed large disturbances by restricting
the exosystem to be slow. Khalil (1994), Mahmoud and Khalil (1996) and
Khalil (1998) used a high-gain observer to solve the nonlinear servomechanism
problem with arbitrarily large initial conditions. Developments in this area are
treated in the book by Byrnes et al. (1997), and the survey by Byrnes and
Isidori (1998).

4.7 Discrete-Time Problems

Much of nonlinear control research has been focused on continuous time mod-
els with continuous control signals. On the other hand, most implemented
controllers are digital, that is, in discrete-time (sampling) and with finite word
length (quantization). Discrete-time nonlinear control systems have been in-
vestigated by Sontag (1979), Monaco and Normand-Cyrot (1986, 1997), Griz-
zle (1985, 1993), Jakubczyk (1987), Jakubczyk and Sontag (1990), Nijmeijer
and van der Schaft (1990), and many others. In discrete-time, geometric con-
cepts lose their transparency and effectiveness. Considerable effort was made
in the development of discrete-time observers, as in Moraal and Grizzle (1995).

Closer to the topics of this talk is the nonlinear passivity approach by Byrnes
and Lin (1994), Lin and Byrnes (1995), which extends the linear results by
Hitz and Anderson (1969). For the system

x(k + 1)= f(x(k)) + g(x(k))u(k) (98)

y(k)= h(x(k)) + j(x(k))u(k) ,

which cannot be passive if j(x(k)) = 0, the passivation and stabilization results
retain similarity with the continuous case, albeit in a more complicated form.

Discrete-time forwarding was developed by Yang et al. (1997), and Mazenc
and Nijmeijer (1998). Constructive results for systems with polynomial non-
linearities were obtained by Nešić and Mareels (1998).

34



Further studies are likely to provide us with a wider range of nonlinear discrete-
time design methods. However, a nagging question is when a model like (98)
will be useful for sampled-data nonlinear control design. When (98) is an exact
discrete-time model for a continuous plant, which is feasible for linear systems
but few others, stabilization for (98) guarantees sampled-data stabilization.
However, even for some linear systems, there exist controllers (parametrized
with the sampling period T ) which stabilize the Euler approximation for all
T > 0 but destabilize the exact discrete-time model. Nešić et al. (1999) de-
rived sufficient conditions for a controller, which stabilizes an approximate
discrete-time model, to also stabilize the exact discrete-time model. However,
a constructive design procedure for nonlinear sampled-data controllers with
prescribed sampling period is yet to be developed.

This and the fact that sampling usually destroys many helpful structural prop-
erties motivate designs to remain in the continuous-time. Teel et al. (1998)
showed that continuous-time ISS controllers, when implemented with suffi-
ciently fast sampling, still achieve the same ISS property.

4.8 Other Topics

Among other important research areas, the three closest to the topics of this
survey are briefly mentioned.

Model predictive control (MPC) is a collection of ‘receding horizon’ optimiza-
tion methods in which the current control action is obtained by solving on-line,
often approximately, an open-loop optimal control problem. The underlying
theory of MPC methods and a growing body of results have been recently
surveyed Mayne et al. (2000).

Nonholonomic systems, with applications to wheeled vehicles, mobile robots
and space systems, are surveyed by Kolmanovsky and McClamroch (1995),
Murray (1995), and Leonard (1998).

Magnitude and rate limits have been treated by optimization-based methods
in Gilbert and Tan (1991), Megretski (1996), Shewchun and Feron (1997),
and by anti-windup techniques in Teel and Kapoor (1997), and Teel (1998).
A bibliography of some 150 papers is given in Bernstein and Michel (1995).

5 SELECTED APPLICATIONS

The much debated ‘theory-applications gap’ is a misleading term that over-
looks the complex interplay between physics, invention and implementation,
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on the one side, and theoretical abstractions, models and analytical designs,
on the other side. A control invention is often ahead of its theoretical explana-
tion, but, by abstracting the invention’s common core, a theoretical analysis
broadens its impact. Conversely, an analytical procedure, confronted with a
new physical situation, often leads to an invention, which, in turn, is likely to
expand or modify the procedure.

Such mutually enriching theory-applications transitions have been common in
recent developments of nonlinear control, as illustrated by four representative
examples.

5.1 Axial Compressors: LgV Design

Experiments with a Rolls-Royce Viper turbojet reported by Freeman et al.
(1998a), and similar studies by other authors, show that ‘active control’ may
increase the stable operating range of axial flow compressors significantly. The
early results of Liaw and Abed (1996) and Badmus et al. (1996) motivated
Krstić et al. (1998) and Banaszuk and Krener (1997) to develop backstepping
designs for throttle and bleed valve actuation, while Behnken and Murray
(1997) and Protz and Paduano (1997) also investigated air injection.

A current study by Fontaine et al. (1999) for a compressor with a ring of
individually actuated bleed valves, employs the following model:

Φ̇ =
1

lc

[
ψc(Φ) +

1

4
ψ′′
c (Φ)(a2 + b2) − Ψ + ΦΦ̄b +

1

2
(1 − αψ′′

c (Φ))(aCa + bCb)

−α
(
ψ′
c(Φ) +

1

4
ψ′′′
c (Φ)(a2 + b2)

)
Φ̄b

]
(99)

Ψ̇ =
1

4lcB2

[
Φ − Φ̄b −

√
2Ψ

KT

]
(100)

ȧ=
1

µ+m
[Tfa + TgCa − λ(b− αCb)] (101)

ḃ=
1

µ+m
[Tfb+ TgCb + λ(a− αCa)] (102)

where ψc(Φ) = k0 + k1Φ + k2Φ
2 + k3Φ

3 is the compressor characteristic and

Tg = Φ − α(ψ′
c(Φ) +

1

8
ψ′′′
c (Φ)(a2 + b2))

Tf = (ψ′
c(Φ) +

1

8
ψ′′′
c (Φ)(a2 + b2) + (1 − αψ′′

c (Φ))Φ̄b − α

4
ψ′′′
c (Φ)(aCa + bCb)).

This model, derived by Liao (1997), is an approximation of the PDE model by
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Moore and Greitzer (1986). Its four states are mass flow Φ, pressure rise Ψ, and
the Fourier coefficients a and b of the first rotating stall mode. The controls
are the first three terms of the Fourier series for the bleed flow: its mean Φ̄b

and the coefficients Ca, Cb. These controls are to stabilize the equilibrium at
the peak of ψc(Φ), that is, at the maximum achievable pressure rise.
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Fig. 6. Axial compressor, V̇ > 0 shaded.

For this model, Fontaine et al. (1999) demonstrated how a simple inverse
optimal LgV design may dramatically enlarge the stability region achieved
with a preliminary linear (optimal LQR) design. The quadratic optimal value
function V (x) of the LQR problem was used as the CLF for the LgV design.
The stability properties of the two designs are judged by the regions where
V̇ > 0. These regions, projected on the (Φ,Ψ)-plane with (a2 + b2) = 0.01, are
shown as shaded areas in Figure 6. For the LQR design, the shaded strip with
V̇ > 0 is unacceptably close to the equilibrium. This unstable region is due to
a nonlinearity changing sign in the control input matrix. The LgV controller
accommodates this destabilizing change of sign and, as shown in Figure 6,
removes the region where V̇ > 0 from the area surrounding the equilibrium,
thus providing a desired region of stability. Because of their extreme simplicity
and potential effectiveness, LgV designs should be the first nonlinear designs
to be tried.
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5.2 Diesel Engine: Passivation Designs

Stringent emission and performance requirements have motivated the au-
tomotive industry to introduce additional actuators like exhaust gas recir-
culation (EGR) and variable geometry turbines (VGT) shown in Figure 7.
Recirculating exhaust gases via the EGR valve into the intake manifold re-

EGR Valve

Compressor

Variable Geometry Turbine

Exhaust Manifold

Intake Manifold

Fig. 7. Turbocharged Diesel Engine.

duces emissions. The exhaust gas flow through the VGT drives a turbocharger
to improve engine performance. For this highly interactive system a seven-state
nonlinear model was developed and validated at Ford by Kolmanovsky et al.
(1997) and van Nieuwstadt et al. (1998). A simplified three-state model

ṗ1 = k1(Wc − kep1 + u)

ṗ2 = k2(kep1 +Wf − u− v) (103)

Ṗc =
1

τ
(−Pc + ηmPt) ,

was used by Janković et al. (1998) for a feedback passivation design. The states
are the intake and exhaust manifold pressures p1, p2 and the compressor power,
Pc, the two controls are u = EGR flow, and v = VGT flow. The significant
nonlinearities in the compressor flow Wc and turbine power Pt are

Wc =
ηc
Tacp

Pc
pµ1 − 1

(104)

Pt = ηtcpT2(1 − p−µ2 )v . (105)

Regulation of the system outputs y1 = Wc −W d
c and y2 = u− ud to zero was

made difficult by the instability of the zero dynamics. Instead, Janković used
the statically equivalent outputs y1 = y1 and y2 = p2 − p2e with stable zero
dynamics.
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After a feedback transformation [u , v]T = T (w1, w2), with w1 and w2 as the
new inputs, and with y1, y2, and z = pµ1 −pµ1e as the new states, (103) becomes

ż= q[−W d
c z + d1y1 + d2 − (pµ1 − 1)(τw1 +

τb

k2
w2)]

ẏ1 =−1

τ
y1 + w1 (106)

ẏ2 =w2 ,

where q =
µp1−µ

1 k1
τ(a+b)(pµ

1−1)
, d1 = (pµ − 1)τb, and d2 = η∗ T2

Ta
(W−d

c + Wf)(p
−µ
2e −

p−µ2 ). To arrive at this partially linear model, cancelations were made with
T (w1, w2). However, they were not implemented because the only purpose of
the model (106) was to make a choice of a CLF simple. By inspection of (106)
a convenient CLF is V = c1y

2
1 + c2y

2
2 + c3z

2. This CLF is then expressed as
a function of the states in the model (103). The dependence on the original
controls u and v is thus recovered and a non-canceling passivation control law
is designed as

u=−kLg1V + ud (107)

v=−kLg2V +W d
c +Wf . (108)

This control law achieves optimality for cost (6) with R = I, required to
guarantee stability margins. After this control law was validated on the full
order model, it was tested in a series of diesel engine experiments. They showed
major improvements in both emissions and performance.

For the three-state model (103) an indirect passivation design by Larsen and
Kokotović (1998) led to a comparable performance in simulations with the
full order model. The main input-output pair was (u,−y2) and the VGT flow
v was used to stabilize the zero dynamics for that pair. This approach was
both easy to understand and had practical appeal, because the use of VGT
to stabilize the zero dynamics was physically meaningful.

5.3 Ship Control: Backstepping with Optimality

Advanced control designs for free-floating and moored ships are being devel-
oped, experimentally tested and implemented by Fossen (1994), Fossen and
Grøvlen (1998), and Fossen and Strand (1999). A typical ship model for these
designs is
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η̇ = J(η)ν

Mν̇ + C(ν)ν +D(ν)ν = Bu , (109)

where ν is the velocity vector decomposed in the body-fixed reference frame, η
is the position/attitude vector decomposed in the Earth-fixed coordinates and
u is a vector of control inputs: azimuth thrusters, main propellers, and tunnel
thrusters. In vectorial backstepping Fossen and Berge (1997) used J(ν)η as the
first virtual control, and the state feedback design is completed at the second
step with the actual control vector. For output feedback designs observer back-
stepping was developed by Fossen and Grøvlen (1998), and Fossen and Strand
(1999). Recently Strand et al. (1998) combined optimal linear controllers, that
perform well locally, with backstepping controllers that have inverse optimal
properties in large operating regions. The resulting design was experimentally
tested in the NUST Laboratory on a model ship with encouraging results.

5.4 Induction Motor: Adaptive Control

Electric machines, especially synchronous generators and induction motors,
have long been objects of nonlinear control. Field orientation control of Blaschke
(1972), Leonhard (1996), is a prime example of an invention ahead of theory.
In the late 1980’s and in the 1990’s, various designs of electrical and electro-
mechanical systems employed state or observer-based feedback linearization,
backstepping, passivation and adaptive control. About twenty such designs
are described, along with experiments, in the book by Dawson et al. (1998),
with a rich bibliography. Diverse passivation designs can be found in the book
by Ortega et al. (1998) along with many references. Sensorless motor control,
which is of major commercial interest, is a topic of many papers including
Shouse and Taylor (1998), and Chang and Fu (1998).

A good induction motor example is the adaptive output feedback design of
Marino et al. (1996, 1999). In its simpler 1996 version, the usual 5-state
voltage-controlled model is first reduced, via singular perturbations, to the
3-state current-controlled model

dω

dt
=µ(ψaib − ψbia) − TL

J
dψa
dt

=−Rr

Lr
ψa − ωψb +Rr

M

Lr
ia (110)

dψb
dt

=ωψa − Rr

Lr
ψb +Rr

M

Lr
ib ,

where ω is the rotor speed, (ψa, ψb) are the rotor fluxes and (ia, ib) are the
stator currents.
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Their initial design was with state feedback using a CLF V quadratic in the
tracking errors ω̃ = ω−ωr, ψ̃ = ψ2

a +ψ2
b −ψ2

r . With the control law chosen to
render V̇ negative, exponential convergence ω̃(t) → 0, ψ̃(t) → 0 was achieved.
At the next design step, convergent flux estimates ψ̂a, ψ̂b were obtained from
an observer mimicking the last two equations of (110). Then the CLF was
augmented with the squares of the flux estimation errors, and used to design
a control law employing ψ̂a, ψ̂b instead of ψa, ψb. An adaptive update law was
added for the constant but unknown load torque TL. At the final and most
complex step, an identifier was designed for the rotor resistance Rr, slowly
varying due to temperature changes. A good estimate of Rr was needed to
ensure good flux estimates ψ̂a and ψ̂b. Experimental results were reported and
interpreted, indicating that the design achieved its stated objectives.

6 Looking Ahead

Constructive trends in nonlinear control were barely discernible in a survey
completed fifteen years ago by Kokotović (1985). One prediction, which was
then easy to make, was that nonlinear geometric concepts were soon to become
engineering tools. What was harder to predict, but fortunately occurred in a
span of ten years, was the activation of stability, optimality and passivity
concepts, and even dynamic games, all of which joined the geometric methods
to form constructive nonlinear designs described in this survey.

The constructive trend will doubtless continue, with further fusion of its in-
gredients into structure-specific procedures applicable to broader classes of
systems. This process has already started for structures induced by physical
laws for electromechanical systems, with new challenges at micro and nano-
scales.

Constructive procedures have been developed for only a few output feedback
problems. This is an area where discoveries of new structures may lead to
significant breakthroughs.

Physically motivated characterizations of nonlinear uncertainties, that is, un-
modeled dynamics, deterministic and stochastic disturbances, are needed to
help robustify the constructive procedures, without undue conservativeness.
To reduce complexity of feedback designs, attention must be paid to structur-
ing and simplification of models.

Most of the surveyed tools and design procedures are analytical, while only
a few relied on LMI computations. Symbolic and numerical procedures will
strengthen analytical design methods.
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Extensions of constructive procedures described in this survey to PDE models
of infinite dimensional systems promise to solve open problems of theoretical
and practical interest. First steps in this direction include a rotating body
beam stabilizer by Coron and d’Andréa Novel (1998), and flow control designs
by Liu and Krstić (2000a,b).

Nonlinear control designs are increasingly important in a wide range of tech-
nologies. With a solid knowledge of nonlinear control, new generations of en-
gineers will be better equipped for new creative tasks.
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Bošković, J.D. (1998). Adaptive control of a class of nonlinearly parametrized
plants. IEEE Transactions on Automatic Control 43, 930–934.

Boyd, S., L. El Ghaoui, E. Feron and V. Balakrishnan (1994). Linear Matrix
Inequalities in System and Control Theory. Vol. 15 of SIAM Studies in
Applied Mathematics. SIAM. Philadelphia, PA.

Braslavsky, J.H. and R.H. Middleton (1996). Global and semiglobal stabiliz-
ability in certain cascade nonlinear systems. IEEE Transactions on Auto-
matic Control 41, 876–880.

Brockett, R.W. (1964). On the stability of nonlinear feedback systems. IEEE
Transactions on Applications and Industry 83, 443–448.

Brockett, R.W. (1966). The status of stability theory for deterministic systems.
IEEE Transactions on Automatic Control 11, 596–606.

Brockett, R.W. and J.L.Willems (1965). Frequency domain stability criteria-
Parts I and II. IEEE Transactions on Automatic Control 10, 255–261, 407–
413.

Bryson, A.E. and Y.-C. Ho (1969). Applied Optimal Control. Blaisdel Pub-
lishing Company.

Byrnes, C.I., A. Isidori and J.C. Willems (1991). Passivity, feedback equiva-
lence, and global stabilization of minimum phase systems. IEEE Transac-
tions on Automatic Control 36, 1228–1240.

Byrnes, C.I. and A. Isidori (1989). New results and examples in nonlinear
feedback stabilization. Systems and Control Letters 12, 437–442.

Byrnes, C.I. and A. Isidori (1991). Asymptotic stabilization of minimum phase
nonlinear systems. IEEE Transactions on Automatic Control 36, 1122–1137.

Byrnes, C.I. and A. Isidori (1998). Output regulation for nonlinear systems:
an overview. In: Proceedings of the 37th IEEE Conference on Decision and
Control. Tampa, FL. pp. 3069–3074.

Byrnes, C.I. and W. Lin (1994). Losslessness, feedback equivalence and the
global stabilization of discrete-time nonlinear systems. IEEE Transactions
on Automatic Control 39, 83–97.

Byrnes, C.I., F. Delli Priscoli and A. Isidori (1997). Output Regulation of
Uncertain Nonlinear Systems. Birkhauser. Boston.

Chang, R.-J. and L.-C. Fu (1998). Nonlinear adaptive sensorless speed con-
trol of induction motors. In: Proceedings of the 37th IEEE Conference on
Decision and Control. Tampa, FL. pp. 965–971.

Chetaev, N.G. (1955). Stability of Motion. GITTL. Moscow.
Cho, Y.-S. and K.S. Narendra (1968). An off-axis circle criterion for the stabil-

ity of feedback systems with a monotonic nonlinearity. IEEE Transactions

44



on Automatic Control 13, 413–416.
Corless, M.J. and G. Leitmann (1981). Continuous state feedback guaranteeing

uniform ultimate boundedness. IEEE Transactions on Automatic Control
26, 1139–1144.
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Kanellakopoulos, I., P.V. Kokotović and A.S. Morse (1991b). Systematic de-
sign of adaptive controllers for feedback linearizable systems. IEEE Trans-
actions on Automatic Control 36, 1241–1253.
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Tezcan, I.E. and T. Başar (1999). Disturbance attenuating adaptive controllers
for parametric strict feedback nonlinear systems with output measurements.
ASME Journal on Dynamic Systems, Measurement and Control 121, 48–57.

Thau, F.E. (1973). Observing the state of non-linear dynamic systems. Inter-
national Journal of Control 17, 471–479.

Tsinias, J. (1989a). Observer design for nonlinear systems. Systems and Con-
trol Letters 13, 135–142.

Tsinias, J. (1989b). Sufficient Lyapunov-like conditions for stabilization. Math-

57



ematics of Control, Signals, and Systems 2, 343–357.
Tsinias, J. (1991). Existence of control Lyapunov functions and applications to

state feedback stabilizability of nonlinear systems. SIAM Journal of Control
and Optimization 29, 457–473.

Tsitsiklis, J.N. and M. Athans (1984). Guaranteed robustness properties of
multivariable nonlinear stochastic optimal regulators. IEEE Transactions
on Automatic Control 29, 690–696.

Tsypkin, Y.Z. (1962). The absolute stability of large-scale, nonlinear sampled-
data systems. Doklady Akademii Nauk SSSR 145, 52–55.

Tsypkin, Y.Z. (1963). Fundamentals of the theory of non-linear pulse control
systems. In: Preprints of the Second IFAC World Congress. Balse, Switzer-
land. pp. 172–180.

Tsypkin, Y.Z. (1964). Absolute stability of equilibrium positions and of re-
sponses in nonlinear, sampled-data, automatic systems. Automation and Re-
mote Control 24, 1457–1470. Translated from Avtomatika i Telemekhanika,
24:1601-1615, 1963.

Tsypkin, Y.Z. (1965). Absolute stability of a class of nonlinear automatic sam-
pled data systems. Automation and Remote Control 25, 918–923. Translated
from Avtomatika i Telemekhanika, 25:1030-1036, 1964.

Utkin, V.I. (1992). Sliding Modes in Optimization and Control. Springer-
Verlag. New York.

van der Schaft, A.J. (1991). On a state space approach to nonlinear H∞ con-
trol. Systems and Control Letters 16, 1–8.

van der Schaft, A.J. (1992). L2 gain analysis of nonlinear systems and nonlin-
ear state feedback H∞ control. IEEE Transactions on Automatic Control
37, 770–784.

van der Schaft, A.J. (1996). L2-Gain and Passivity Techniques in Nonlinear
Control. Springer-Verlag. New York.

van Nieuwstadt, M., P.E. Moraal, I.V. Kolmanovsky, A. Stefanopoulou,
P. Wood and M. Criddle (1998). Decentralized and multivariable design
for EGR-VGT control of a diesel engine. In: IFAC Workshop on Advances
in Automotive Control. Mohican State Park, OH.

Vidyasagar, M. (1993). Nonlinear Systems Analysis. second ed.. Prentice Hall.
Englewood Cliffs, New Jersey.

Wen, J.T. (1988). Time domain and frequency domain conditions for strict
positive realness. IEEE Transactions on Automatic Control 33, 988–992.

Willems, J.C. (1972). Dissipative dynamical systems Part I: General theory;
Part II: Linear systems with quadratic supply rates. Archive for Rational
Mechanics and Analysis 45, 321–393.

Xiao, C. and D. Hill (1998). Concepts of strict positive realness and the ab-
solute stability problem of continuous-time systems. Automatica 34, 1071–
1082.

Yakubovich, V.A. (1962). The solution of certain matrix inequalities in auto-
matic control theory. Doklady Akademii Nauk 143, 1304–1307.

Yakubovich, V.A. (1965). The matrix-inequality method in the theory of the

58



stability of nonlinear control systems-Parts I-III. Automation and Remote
Control. Translated from Avtomatika i Telemekhanika, 25:1017-1029, 1964,
26:577-590, 26:753-763, 1965.

Yang, Y., E.D. Sontag and H.J. Sussmann (1997). Global stabilization of linear
discrete-time systems with bounded feedback. Systems and Control Letters
30, 273–281.

Yaz, E. (1993). Stabilizing compensator design for uncertain nonlinear sys-
tems. Systems and Control Letters 25, 11–17.

Yoshizawa, T. (1966). Stability Theory by Lyapunov’s Second Method. The
Mathematical Society of Japan. Tokyo.

Zames, G. (1964). The input-output stability of nonlinear and time-varying
feedback systems. In: Proceedings of the National Electronics Conference.
pp. 725–730.

Zames, G. (1966). On the input-output stability of time-varying nonlinear
feedback systems-Parts I and II. IEEE Transactions on Automatic Control
11, 228–238 and 465–476.

Zames, G. (1981). Feedback and optimal sensitivity: Model reference transfor-
mation, multiplicative seminorms and approximate inverses. IEEE Trans-
actions on Automatic Control 26, 301–320.

Zames, G. and P.L. Falb (1968). Stability conditions for systems with mono-
tone and slope-restricted nonlinearities. SIAM Journal of Control and Op-
timization 6, 89–108.

Zhang, Y., P.A. Ioannou and C.-C. Chien (1996). Parameter convergence of a
new class of adaptive controllers. IEEE Transactions on Automatic Control
41, 1489–1493.

Zubov, V.I. (1957). The Methods of A.M. Liapunov and their Application.
Leningrad University.

Zubov, V.I. (1966). Theory of optimal control. Sudostroenie, Leningrad.

59


